
Void: A fast and light voice liveness detection system

Muhammad Ejaz Ahmed
Data61, CSIRO

Sungkyunkwan University

Il-Youp Kwak∗

Chung-Ang University
Jun Ho Huh

Samsung Research
Iljoo Kim

Samsung Research

Taekkyung Oh
KAIST

Sungkyunkwan University

Hyoungshick Kim
Sungkyunkwan University

Abstract
Due to the open nature of voice assistants’ input channels, ad-
versaries could easily record people’s use of voice commands,
and replay them to spoof voice assistants. To mitigate such
spoofing attacks, we present a highly efficient voice liveness
detection solution called “Void.” Void detects voice spoof-
ing attacks using the differences in spectral power between
live-human voices and voices replayed through speakers. In
contrast to existing approaches that use multiple deep learn-
ing models, and thousands of features, Void uses a single
classification model with just 97 features.

We used two datasets to evaluate its performance: (1)
255,173 voice samples generated with 120 participants, 15
playback devices and 12 recording devices, and (2) 18,030
publicly available voice samples generated with 42 partici-
pants, 26 playback devices and 25 recording devices. Void
achieves equal error rate of 0.3% and 11.6% in detecting voice
replay attacks for each dataset, respectively. Compared to a
state of the art, deep learning-based solution that achieves
7.4% error rate in that public dataset, Void uses 153 times
less memory and is about 8 times faster in detection. When
combined with a Gaussian Mixture Model that uses Mel-
frequency cepstral coefficients (MFCC) as classification fea-
tures – MFCC is already being extracted and used as the main
feature in speech recognition services – Void achieves 8.7%
error rate on the public dataset. Moreover, Void is resilient
against hidden voice command, inaudible voice command,
voice synthesis, equalization manipulation attacks, and com-
bining replay attacks with live-human voices achieving about
99.7%, 100%, 90.2%, 86.3%, and 98.2% detection rates for
those attacks, respectively.

1 Introduction

Popular voice assistants like Siri (Apple), Alexa (Amazon)
and Now (Google) allow people to use voice commands to

∗Part of this work done while Dr. Kwak was at Samsung Research.

quickly shop online, make phone calls, send messages, con-
trol smart home appliances, access banking services, and so
on. However, such privacy- and security-critical commands
make voice assistants lucrative targets for attackers to exploit.
However, recent studies [11, 12, 23] demonstrated that voice
assistants are vulnerable to various forms of voice presenta-
tion attacks including “voice replay attacks” (attackers simply
record victims’ use of voice assistants and replay them) and
“voice synthesis attacks” (attackers train victims’ voice bio-
metric models and create new commands).

To distinguish between live-human voices and replayed
voices, several voice liveness detection techniques have been
proposed. Feng et al. [11] proposed the use of wearable de-
vices, such as eyeglasses, or earbuds to detect voice liveness.
They achieved about 97% detection rate but rely on the use
additional hardware that users would have to buy, carry, and
use. Deep learning-based approaches [7, 30] have also been
proposed. The best known solution from an online replay
attack detection competition called “2017 ASVspoof Chal-
lenge” [7] is highly accurate, achieving about 6.7% equal
error rate (EER) – but it is computationally expensive and
complex: two deep learning models (LCNN and CNN with
RNN) and one SVM-based classification model were all used
together to achieve high accuracy. The second best solution
achieved 12.3% EER using an ensemble of 5 different classifi-
cation models and multiple classification features: Constant Q
Cepstral Coefficients (CQCC), Perceptual Linear Prediction
(PLP), and Mel Frequency Cepstral Coefficients (MFCC) fea-
tures were all used. CQCC alone is heavy and would consist
of about 14,000 features.

To reduce computational burden and maintain high detec-
tion accuracy, we present “Void” (Voice liveness detection),
which is a highly efficient voice liveness detection system
that relies on the analysis of cumulative power patterns in
spectrograms to detect replayed voices. Void uses a single
classification model with just 97 spectrogram features. In par-
ticular, Void exploits the following two distinguishing charac-
teristics in power patterns: (1) Most loudspeakers inherently
add distortions to original sounds while replaying them. In

consequence, the overall power distribution over the audible
frequency range often show some uniformity and linearity. (2)
With human voices, the sum of power observed across lower
frequencies is relatively higher than the sum observed across
higher frequencies [15, 29]. As a result, there are significant
differences in the cumulative power distributions between
live-human voices and those replayed through loudspeakers.
Void extracts those differences as classification features to
accurately detect replay attacks.

Our key contributions are summarized below:

• Design of a fast and light voice replay attack detection
system that uses a single classification model and just 97
classification features related to signal frequencies and cu-
mulative power distribution characteristics. Unlike existing
approaches that rely on multiple deep learning models and
do not provide much insight into complex spectral features
being extracted [7, 30], we explain the characteristics of
key spectral power features, and why those features are
effective in detecting voice spoofing attacks.

• Evaluation of voice replay attack detection accuracy using
two large datasets consisting of 255,173 voice samples col-
lected from 120 participants, 15 playback devices and 12
recording devices, and 18,030 ASVspoof competition voice
samples collected from 42 participants, 26 playback speak-
ers and 25 recording devices, respectively, demonstrating
0.3% and 11.6% EER. Based on the latter EER, Void would
be ranked as the second best solution in the ASVspoof 2017
competition. Compared to the best-performing solution
from that competition, Void is about 8 times faster and uses
153 times less memory in detection. Void achieves 8.7%
EER on the ASVspoof dataset when combined with an
MFCC-based model – MFCC is already available through
speech recognition services, and would not require addi-
tional computation.

• Evaluation of Void’s performance against hidden com-
mand, inaudible voice command, voice synthesis, equal-
ization (EQ) manipulation attacks, and combining replay at-
tacks with live-human voices showing 99.7%, 100%, 90.2%,
86.3%, and 98.2% detection rates, respectively.

2 Threat Model

2.1 Voice replay attacks
We define live-human audio sample as a voice utterance ini-
tiated from a human user that is directly recorded through
a microphone (such that would normally be processed by a
voice assistant). In a voice replay attack, an attacker uses a
recording device (e.g., a smartphone) in a close proximity
to a victim, and first records the victim’s utterances (spoken
words) of voice commands used to interact with voice assis-
tants [3, 11, 12]. The attacker then replays the recorded sam-
ples using an in-built speaker (e.g., available on her phone) or

Figure 1: Steps for a voice replay attack.

a standalone speaker to complete the attack (see Figure 1).
Voice replay attack may be the easiest attack to perform

but it is the most difficult one to detect as the recorded voices
have similar characteristics compared to the victim’s live
voices. In fact, most of the existing voice biometric-based
authentication (human speaker verification) systems (e.g.,
[31, 32]) are vulnerable to this kind of replay attack.

2.2 Adversarial attacks
We also consider more sophisticated attacks such as “hidden
voice command” [24, 25], “inaudible voice command” [18–
20], and “voice synthesis” [6, 12] attacks that have been dis-
cussed in recent literature. Further, EQ manipulation attacks
are specifically designed to game the classification features
used by Void by adjusting specific frequency bands of attack
voice signals.

3 Requirements

3.1 Latency and model size requirements
Our conversations with several speech recognition engineers
at a large IT company (that run their own voice assistant ser-
vices with millions of subscribed users) revealed that there are
strict latency and computational power usage requirements
that must be considered upon deploying any kind of machine
learning-based services. This is because additional use of
computational power and memory through continuous invo-
cation of machine learning algorithms may incur (1) unac-
ceptable costs for businesses, and (2) unacceptable latency
(delays) for processing voice commands. Upon receiving a
voice command, voice assistants are required to respond im-
mediately without any noticeable delay. Hence, processing
delays should be close to 0 second – typically, engineers do
not consider solutions that add 100 or more milliseconds of
delay as portable solutions. A single GPU may be expected to
concurrently process 100 or more voice sessions (streaming
commands), indicating that machine learning algorithms must
be lightweight, simple, and fast.

Further, as part of future solutions, businesses are consid-
ering on-device voice assistant implementations (that would
not communicate with remote servers) to improve response
latency, save server costs, and minimize privacy issues related
to sharing users’ private voice data with remote servers. For
such on-device solutions with limited computing resources
available, the model and feature complexity and size (CPU

Figure 2: Spectrogram of an example phrase “The Blue
Lagoon is a 1980 romance and adventure film” lively uttered
by a human user (left), and cumulative power spectral decay
of the corresponding command (right).

Figure 3: Spectrogram of the same example phrase (as in Fig-
ure 2) replayed using iPhone 6S Plus (left), and cumulative
power spectral decay (right).

and memory usage) requirements would be even more con-
straining.

3.2 Detection accuracy requirements

Our main objective is to achieve competitively high accuracy
while keeping the latency and resource usage requirements
at acceptable levels (see above). Again, our conversations
with the speech recognition engineers revealed that businesses
require around 10% or below EER to be considered as a usable
solution. For reference, the best performing solution from the
ASVspoof 2017 competition achieved 6.7% EER [30], and
the second best solution achieved 12.3% [7].

4 Key classification features

Void exploits the differences in frequency-dependent spectral
power characteristics between live-human voices and voices
replayed through loudspeakers. Through numerous trials and
experiments, we observed three distinct features related to
power spectrum of speech signals that may distinguish live-
human voices from voices replayed through loudspeakers.
This section explores those features in detail.

Figure 1 shows the steps involved in replaying recorded
voice signals. An attacker would first record a victim’s voice
command using her own recording device. Then the attacker
would use the same device (in-built speaker) to replay the
recorded voice command, targeted at the victim’s device. This
attack command is then processed by the voice assistant ser-
vice running on the victim’s device. While performing this
replay attack, some distortions may be added to the victim’s
original sound while being recorded with the microphone on
the attacker’s device, and also while being replayed through
the in-built speaker due to hardware imperfections. The fol-
lowing sections explore the spectral power characteristics of
replayed voices, and analyze key classification features that
are used to classify voice replay attacks.

4.1 Decay patterns in spectral power

In general, low quality loudspeakers are designed to achieve
high sensitivity and volume but at the cost of compromising
audio fidelity and adding unwanted distortions [35]. As a
result, distortions that contribute to non-linearity may be more
prevalent in low quality loudspeakers, and less visible in high
quality loudspeakers [36, 37].

Figure 2 (left) shows the spectrogram of a sentence “The
Blue Lagoon is a 1980 romance and adventure film” uttered
live, and processed by an audio chipset in a laptop. Here, the
audio sampling rate was 44.1kHz, and the utterance duration
was 5 seconds. In this voice sample, most of the spectral
power lies in the frequency range between 20Hz and 1kHz.
The cumulative spectral power measured for each frequency
is also shown in Figure 2 (right). There is an exponential
power decay of human voice at frequency around 1kHz.

On the other hand, the spectrogram of a phrase replayed
through iPhone 6s Plus in-built speaker (see Figure 3) shows
some uniformity – spectrum spread is shown in the power
distributions between 1 and 5kHz. Unlike live-human voice
trends shown in Figure 2, the cumulative spectral power does
not decrease exponentially; rather, there is a relatively more
linear decay between 1 and 5kHz. To show the difference
between Figure 2 and 3 quantitatively, we added quadratic
fitting curves on them and computed Root Mean Square Error
(RMSE) separately.

Our experimentation with 11 in-built smartphone speakers
showed similar behaviors in their spectral power distributions;
i.e., power decreased gradually across frequencies and did not
decay exponentially. An example cumulative distribution of
spectral power density is shown in Figure 4. With the human
voice example, about 70% of the overall power lies in the
frequency range below 1kHz. However, in the loudspeaker
case, the cumulative distribution increases almost linearly,
and 70% of the total power lies within the frequency range of
about 4kHz.

One possible explanation for this spreading out charac-
teristic is low-quality hardware boosting power in certain
frequency ranges. Consequently, such a linear decay pattern
in spectral power (over audible frequency range) could be

0 1 2 3 4 5 6 7 8

Frequency, kHz

0

0.2

0.4

0.6

0.8

1

p
o

w
c
d
f

Live-human

Smartphone speaker

 = 0.80,

q = 38.18

 = 0.97,

q = 9.88

Figure 4: Cumulative distribution of spectral power den-
sity over frequencies, showing up to 8kHz (W = 10).

trained and used to classify voices replayed through low-
quality loudspeakers. Appendix A demonstrates that three
signal power features would be used to classify live-human
voices and voices replayed through 11 in-built smartphone
speakers.

4.2 Peak patterns in spectral power
Because high-quality standalone loudspeakers boost power
across a wide range of frequencies to reduce non-linear dis-
tortions, the linear decay patterns described above may not be
sufficient against such loudspeakers.

0 2 4 6 8 10

Frequency, kHz

0

5

10

15

20

25

30

N
or

m
al

iz
ed

 p
ow

er

Live-human

0 2 4 6 8 10

Frequency, kHz

0

5

10

15

20

25

30

N
or

m
al

iz
ed

 p
ow

er

Replayed: Logitech (2.1 Ch)

0 2 4 6 8 10

Frequency, kHz

0

5

10

15

20

25

30

N
or

m
al

iz
ed

 p
ow

er

Replayed: Yamaha (5.1 Ch)

Figure 5: Signal power frequency range between 20Hz
and 10kHz of the spectrogram of the same example
phrase (as in Figure 2). Live-human voice (left): fine-
grained power fluctuations can be observed over the fre-
quency range from 20Hz to 2kHz. High-quality speakers
(middle and right): the power over the same frequency
range is more concentrated with less fluctuations.

Figure 5 compares normalized signal power of live-human
voices and voices replayed through two different high-quality
loudspeakers. Even though they show similar exponential
decay patterns overall, the low frequency patterns are different
(see red-dashed rectangles in Figure 5). As for loudspeakers
(middle and right), there is a smaller number of sharp and
long peaks at low frequencies compared to live-human voices
(left).

Thus, distortion-induced power patterns (e.g., the number
of visible power peaks, their corresponding frequencies, and
standard deviations of power peaks sizes) in low frequen-
cies could be effective in detecting standalone speakers that

produce higher quality sounds. We also use higher order poly-
nomials to accurately model spectral power shapes, and use
these models to identify more fine-grained differences in spec-
tral power patterns between live-human and replayed samples
(see Figure 5). We also provide power patterns for different
loudspeakers in Appendix B.

4.3 Linear prediction cepstrum coefficients
(LPCC)

Because the decay and peak patterns discussed in Sections 4.1
and 4.2 mainly look at specific frequency ranges. To per-
form a more general inspection of wider frequency ranges,
we additionally use linear prediction cepstrum coefficients
(LPCC) [4] as a complementary feature.

LPCC is popularly used for auditory modeling in speech-
related applications. The key idea behind LPCC is that a
speech sample can be approximated as a linear combination
of previous samples. LPCC for a voice sample is computed
by minimizing the sum of squared differences between the
voice sample and linearly predicted ones. The computational
complexity of LPCC is lower than MFCC since LPCC does
not require computation of discrete Fourier transform [5]. We
chose LPCC as a complementary, lightweight feature to help
Void utilize spectral features covering wider frequency ranges
of speech signals.

5 System design

We designed Void to satisfy the requirements specified in
Section 3 based on the key classification features described in
Section 4. To detect replay attacks, Void analyzes signal power
distributions over the audible frequency range – computing
linearity degree of given signal power, and identifying peak
patterns in low-power and high-power frequencies.

Audio LPCC features

High power

frequencies

features

Low frequencies

power features

Power linearity

degree features

Signal feature vectors FVs

(3) Attack detection

Training

data

Classifier

Decision

(live-

human or

speaker)

Real-time

commandsVoice signal

Spectrogram

Frequency-power

signal data

Integrate

power over

time

Mic

(1) Signal transformation (2) Feature extraction

Figure 6: High-level design of Void.

5.1 Void overview
Attack detection through Void involves three stages as shown
in Figure 6: signal transformation, feature extraction, and real-
time attack detection. The overall Void algorithm is described
in Algorithm 1. A voice command Voicein, window size W ,
and a weighting factor ω are given as inputs to Algorithm 1.

Spow represents the cumulative spectral power per frequency
of Voicein. W represents the size of a single segment of Spow
to fully capture the dynamic characteristics of Spow with a
small number of segments. A weighting factor ω between 0
and 1 is used to calculate a threshold for feature values in
higher frequencies. Those parameter values were determined
experimentally with a large number of training samples. Last,
pow(i) represents the accumulated power in ith segment of
Spow. We only consider voice signals below 15kHz because
most of the signal power for voice samples fall below 15kHz.

Algorithm 1 Void’s overall procedure.
Input: Voicein, W and ω

Output: live-human or replayed
Stage 1: Signal transformation

1: Compute STFT of for input voice command Voicein
2: Compute Spow from STFT

Stage 2: Feature extraction
3: Divide Spow into k segments where k = b size(Spow)

W c.
4: for ith segment Segi from i = 1 to k do
5: pow(i) = the sum of power in Segi.
6: < pow > = Vectorize(pow(1), · · · , pow(k)) and normalize between 0 and 1
7: FVLFP = First 48 values of < pow >
8: FVLDF = LinearityDegreeFeatures(< pow >)
9: FVHPF = HighPowerFrequencyFeatures(FVLFP, ω)

10: Compute LPCC of Voicein and store the results as FVLPC
Stage 3: Attack detection

11: FVVoid = {FVLDF ,FVHPF ,FVLPC ,and FVLFP}
12: Run SVM classifier with FVVoid and provide the class label (either live-human

or replayed) as output

5.2 Signal transformation

In the first signal transformation stage, given an input voice
signal Voicein, short-time Fourier transform (STFT) is com-
puted (Step 1 of Algorithm 1). To compute STFT, a given
voice signal is divided into short chunks of equal length (de-
noted as wlen = 1,024); Fourier transform is then computed
on each chunk. We used a periodic Hamming window length
wlen of 1,024, and a hop length of 256, which is computed
by wlen/4. The number of fast Fourier transform points used
(n f f t) for computing STFT is set to 4,096. The obtained
signal spectrogram contains frequencies and corresponding
power over time (see Figure 2 (left)). From the computed
STFT, cumulative spectral power per frequency (Spow) is com-
puted (Step 2 of Algorithm 1). The terms “cumulative spec-
tral power” and “power” are used hereafter interchangeably.
Spow is a vector that contains the total accumulated power for
each frequency over the full duration of Voicein (see Figure 2
(right)). Spow obtained from STFT is a vector of size 1,500
(Step 2 of Algorithm 1). We use the notation size(Spow) to
represent the number of values stored in Spow.

5.3 Feature extraction

The vector Spow computed from the first stage is used as the
input to the second stage to extract the classification features.

Void sequentially computes the following four types of fea-
tures: (1) low frequencies power features (FVLFP), (2) signal
power linearity degree features (FVLDF), (3) higher power
frequencies features (FVHPF), and (4) LPCC features for au-
dio signals (FVLPC). FV stands for feature vectors. The first
three feature classes are computed from Spow while FVLPC is
computed directly from raw voice signals Voicein.

5.3.1 Low frequencies power features

In the second stage of Algorithm 1, we first divide the sig-
nal Spow into k short segments of equal-length according to
the given window size W (see Step 3). We empirically set
W = 10. If the size of Spow can not be divided by W , we
simply omit the last segment. Next, we compute the sum of
power in each segment Segi for i = 1 to k (see Steps 4 and
5). We then vectorize the first k segments of power density
values as < pow > (= pow(1), . . . , pow(k)) (see Step 6). The
vector < pow > is directly used in FVLFP (see Step 7). After
executing this step, we would have cumulative spectral power
density values for all k segments. Power density values for
each segment are ordered by frequency, starting from the low-
est frequency of a given voice sample. We are only interested
in retaining power density values within the frequency value
of 5kHz because our experiments showed that there are clear
differences between human and replayed voices at the lower
frequencies below 5kHz (see Figure 5). Therefore, we keep
just the first 48 values of < pow > vector and assign them to
FVLFP (see Step 7).

5.3.2 Signal power linearity degree features

Given the vector < pow > of k segments, we compute the sig-
nal’s feature vector (FVLDF) to measure the degree of linearity
(as discussed in Section 4.1).

Algorithm 2 LinearityDegreeFeatures
Input: < pow >
Output: FVLDF ={ρ, q}.

1: Normalize < pow > with sum(< pow >) to obtain < pow >normal
2: Accumulate the values of < pow >normal to obtain powcdf
3: Compute the correlation coefficients of powcdf and store the results as ρ

4: Compute the quadratic coefficients of powcdf and store the results as q

Algorithm 2 describes the procedure for computing the
linearity degree of < pow >. Initially, < pow > is normal-
ized by dividing each value in < pow > by the total signal
power (sum(< pow >)) (see Step 1 in Algorithm 2). The nor-
malized power signal vector < pow >normal is then used to
compute the cumulative distribution of spectral power, de-
noted by powcdf (see Step 2). In this step, < pow >normal is
accumulated in a step-wise fashion.

For the linearity degree of powcdf, we compute the follow-
ing two features (see Step 3 and 4): correlation coefficients
ρ and quadratic curve fitting coefficients q of powcdf (see

Appendix C). Correlation coefficients of a cumulative distri-
bution can be used to quantify the linearity of the cumulative
distribution. However, we found that ρ is not highly sensi-
tive in identifying the distinguishable exponential growth of
power in live-human voices at frequencies between 20Hz and
1kHz (see Figure 5). Therefore, we introduce the quadratic
curve fitting coefficients q of signal powcdf as another metric
to quantify the degree of linearity for the cumulative distri-
bution function. Finally, the two computed coefficients {ρ,q}
are stored as FVLDF .

5.3.3 High power frequency features

Given the vector < pow > and the peak selection threshold
ω, we compute the feature vector (FVHPF) to capture the
dynamic characteristics of spectral power (see Appendix D).

Algorithm 3 HighPowerFrequencyFeatures
Input: FVLFP and ω

Output: FVHPF = {Npeak , µpeaks, σpeaks, Pest }
1: Find peaks from FVLFP and store the discovered peaks
{(peak1, loc1), · · · ,(peakn, locn)} as Speak . n is the number of peaks discovered
in FVLFP

2: Tpeak = ω ·max(peak1, · · · , peakn)
3: for each peaki in Speak from i = 1 to n do
4: if peaki < Tpeak then remove peaki from Speak

5: Npeak = the number of peaks in Speak ;
6: µpeak = the mean of the locations of peaks in Speak
7: σpeak = the standard deviation of the locations of peaks in Speak
8: Pest = estimated coefficients to fit a polynomial of order 6 to FVLFP

Algorithm 3 describes the procedure for computing high
power frequency features (FVHPF). In < pow >, we first iden-
tify peaks and their locations (see Step 1). Our peak selection
criterion Tpeak automatically scales itself with respect to the
spectral power density values of a given signal. For example,
for a given low or high power voice signal, Tpeak is computed
accordingly as shown in Step 2. We experimentally found
that detected peaks from live-human voice samples and re-
played samples show different characteristics when we set
ω= 0.6. However, ω needs to be configured such that the high
power frequency features are effective in detecting replayed
voices. We set a threshold value to filter out insignificant
peaks, multiplying max(Speak) by a given weighting factor ω

where 0≤ ω≤ 1 (see Step 2, 3, and 4).
To construct FVHPF , we first count the number of peaks

in Speak and store the number of counted peaks as Npeak (see
Step 5); the mean and standard deviation of locations of the
discovered peaks are sequentially computed and stored as
µpeaks and σpeaks, respectively (see Step 6 and 7); and we
determine the 6 order of the polynomial to be fitted to FVLFP
and use the polynomial coefficients as Pest (see Step 8).

5.3.4 LPCC features

We use an auto-correlation method with Levinson-Durbin
algorithm [26] to compute LPCC for a given speech signal,

generating 12 coefficients. These 12 LPCC coefficients are
stored in the feature vector FVLPC.

5.4 Attack detection

In the third stage of Algorithm 1, we construct a classifier
with all the feature sets computed in Section 5.3 to detect
attacks performed through loudspeakers. Instead of manu-
ally constructing detection rules, we opted to utilize machine
learning-based classifiers as follows:

Feature set. The four feature vectors FVLFP, FVLDF ,
FVHPF , and FVLPC are combined as a feature set for clas-
sification algorithm. The total number of features is 97. We
used Classification and Regression Trees (CART) [28] to
analyze the relative importance of individual classification
features. Figure 7 shows the importance scores computed for
individual features based on the classifications performed on
the ASVspoof dataset.

Features

0 8 16 24 32 40 48 56 64 72 80 88 97

Im
p

o
rt

a
n

c
e

 s
c
o

re

0

1

2

3

FV
LPC FV

LDF

FV
LFP

FV
HPF

Figure 7: Importance scores for individual features on the
ASVspoof dataset.

There were 17 (with the scores above 1.0) noticeably im-
portant features (shown by the peaks) from the 4 feature
groups visualized in red-dashed rectangles. We can observe
that FVLFP and FVLPC are the most important features. From
the FVHPF group, we found that Pest features play an impor-
tant role in distinguishing voice replay attack. However, some
power value features in the low frequencies group (FVLFP)
were relatively less important. To show the necessity of all
features used in Void, we also tested Void separately on each
of the feature groups: FVLFP, FVLDF , FVHPF , and FVLPC (see
Appendix E).

Classifier. To implement a lightweight system, we need
to build a classifier based on the four feature vectors, which
achieves high detection accuracy and meets the latency re-
quirements. Our recommended classification algorithm is de-
scribed in Section 7.2. We also provide the details of Void’s
implementation parameters (see Appendix F).

6 Data Collection

This section describes human voice samples and voice attack
samples we collected using multiple recording and playback
devices, and under varying conditions. For our own dataset, all
of the voice samples were recorded at a sampling frequency
(Fs) of 44.1kHz. We also used a publicly available replay at-
tack dataset that was used in the 2017 voice spoofing attack
detection (ASVspoof) competition [7]. The ASVspoof dataset
evauation results were used to directly compare Void’s perfor-
mance against the top performing (state of the art) solutions
from the competition.

6.1 Demographics and human voice collection
We recruited a total of 120 participants from two different
locations (a university and a company), and asked each par-
ticipant to say around 50 commands from a prepared list of
real-world voice assistant commands. We used two different
smartphones, Galaxy S8 and iPhone 8 to record all human
voices. After eliminating voice samples that were not recorded
properly or were not understood by the voice assistant, we
were left with 10,209 human voice samples to experiment
with. The voice commands were mixed in lengths (approxi-
mately ranging from 2 to 5 seconds) and command types (e.g.,
setting alarms, calling contacts, and opening emails). About
53% of the participants were male, ensuring that both male
and female voice frequency ranges were covered [16]. Most
of the participants were in the 40-49 (13%), 30-39 (62%), and
20-29 (25%) age groups.

We explicitly informed the participants that the purpose
of the voice sample collection was to develop and evaluate a
voice liveness detection solution. Ethical perspective of our
research was validated through an institutional review board
(IRB) at Sungkyunkwan university; the IRB file number is
“2018-01-024.”

6.2 Replay attack dataset
To generate a comprehensive replay attack dataset, we re-
played all 10,209 human voice samples in an open lab envi-
ronment through a mixed set of speakers and recorded them
under varying conditions as described below:

• Background noise: The open lab environment we used to
record all attack samples is collaboratively used by about
100 employees at a large IT company. During the day, the
lab is used for discussions, development, testing, coffee
breaks, and so on. The lab is quiet in the evenings. There
are also daily background noises generated from server
machines, TVs, projectors, and robot cleaners. The human
voices were replayed and recorded throughout the day and
in the evenings, capturing natural yet diverse set of back-
ground noises as well as silent moments while generating
the replay attack dataset.

• Distances between attacking devices and target devices:
Distances between target devices (used to record voice
samples) and attack devices (used to play recorded voice
samples) could affect the detection rate because spectral
power features could be affected with distance. Hence, we
recorded replayed voice samples in three varying distances:
about 15 centimeters, 130 centimeters, and 260 centimeters
away from each playback speaker.

• Playback speaker types: We used 11 different types of
in-built speakers including smartphones and a smart TV,
and four different types of standalone speakers to replay
recorded voice samples (see Appendix G). Each standalone
speaker was different in terms of the number of sound chan-
nels supported, brand, price, and electrical power. Our stan-
dalone speaker selection included Logitech 2.1 ch., and
Yamaha 5.1 ch. speakers that were designed to optimize the
final acoustic sounds for human ears. We replayed about
5,500 human voices through each speaker type. Only the
Yamaha 5.1 channel speaker was connected to the replaying
devices (smartphones) through Bluetooth. The other three
standalone speakers were all connected through auxiliary
port (AUX) physical cables.

• Recording device types (microphones): We used 3 dif-
ferent laptops, and 9 different smartphones as recording
devices (see Appendix H). For each playback speaker type,
we used a different combination of three recording devices
with varying distances as described above.

After eliminating voice samples that were not recognized
properly by voice assistants, we were left with a final attack
set of 244,964 samples to experiment with. All voice samples
were recorded, stored, and analyzed in the “WAV” file format.
The details of the dataset are presented in Table 1.

Table 1: Replay attack dataset description.

Detail Our dataset ASVspoof

Data
Live-human 10,209 3,565
Attack 244,964 14,465
Participants 120 42

Devices Speakers 15 26
Recording mics 12 25

Configurations 33 125

6.3 ASVspoof 2017 dataset
We also evaluated Void’s performance against an online replay
attack database referred to as the “2017 ASVspoof Challenge
dataset,” which was created to facilitate an online competition
for detecting voice spoofing attacks [8]. The entire dataset
(all three sets combined) contains voice samples collected
through 177 replay attack sessions, where each session con-
sists of voice samples that were recorded under varying replay

configurations, and at a sampling frequency of 16kHz. Each
replay configuration is different with respect to recording de-
vice type, playback device type, and recording environment.
Recording environments include balconies, bedrooms, can-
teens, homes, and offices. 26 playback devices were used, in-
cluding 12 high-quality professional audio equipment such as
active studio monitors and studio headphones (e.g., Genelec
8020C and Behringer Truth B2030A). Such devices would
introduce much less acoustic distortion than smaller, in-built
loudspeakers. Nine playback devices were in-built speakers
from various smartphones, tablets, and laptops. 5 devices
were medium-quality, portable speakers (e.g., Creative A60
speakers). 25 recording devices were used, including 12 high-
quality recording devices such as studio-quality condenser
microphones or hand-held recorders (e.g., Zoom H6 recorder
with Behringer ECM8000 mic). There were 61 replay config-
urations used.

The ASVspoof dataset is partitioned into training set, de-
velopment set, and evaluation set (see Table 2). We trained
Void on the training and development sets, and tested Void’s
performance against the evaluation set, which is compliant
with the ASVspoof competition rules (see [9]).

Table 2: Description of ASVspoof 2017 dataset [8].

Partition # Speakers Live-human Replay
Training 10 1,507 1,507
Development 8 760 950
Evaluation 24 1,298 12,008

Total 42 3,565 14,465

The training set and developing set combined consists of
2,267 live-human samples and 2,457 attack samples. The eval-
uation set consists of 1,298 live-human samples and 12,008
attack samples – this proportion of attack samples in the eval-
uation set is much larger (see Table 1).

7 Evaluation

7.1 Experiment setup
For evaluation, we used the two datasets described in Sec-
tion 6. As for the first attack dataset that we collected, to
reduce any bias that might be associated with the process of
randomly splitting the datasets into training and testing sets,
we used 10 fold cross-validation: the training samples were
partitioned into 10 equal-sized sets with similar class distri-
butions. As for the ASVspoof dataset, we trained Void using
both the train and developing sets, and evaluated Void against
the evaluation set – this is how the competition measured the
performance of submitted solutions.

To measure the performance of Void, we rely on the stan-
dard speaker verification metrics, which are “false accep-
tance rates” (FAR) and “false rejection rates” (FRR). The

four possible classification decisions are presented in Table
3. “True acceptance” (TA) and “true rejection” (TR) refer
to correctly detecting live-human voice and loudspeaker, re-
spectively. “False acceptance” (FA) is when a loudspeaker
is mis-classified as live-human voice, and “false rejection”
(FR) is when live-human voice is mis-classified as loud-
speaker. We measure equal error rates (EERs), representing
error rates for which FAR and FRR are equal. Receiver op-
erating characteristic (ROC) curve and area under the curve
(AUC) were also used for comparison of various thresholds.
For computing EER, we used the Bosaris toolkit (https:
//sites.google.com/site/bosaristoolkit/) that was
suggested in the 2017 ASVspoof competition [7].

Table 3: Four possible classification decisions.

Accept Reject

Live-human True Acceptance False Rejection
Replay attack False Acceptance True Rejection

Our experiments were conducted on a powerful server
equipped with two Intel Xeon E5 (2.10GHz) CPUs, 260GB
RAM and NVIDIA 1080Ti GPU, running 64-bit Ubuntu
16.04 LTS operating system. Our latency and model com-
plexity results were measured based on this server setting.

7.2 Optimal classification method for Void

To determine the optimal classification method, we first eval-
uated the performance of five different classification methods
that are popularly used in security systems: k-Nearest Neigh-
bor (kNN), Random forest, SVM with linear kernel (SVM
linear), and SVM with RBF kernel (SVM RBF). All of those
classifiers were tested using the ASVspoof dataset.

Table 4 shows the detection accuracy of four classification
models (k-Nearest Neighbor (kNN), Random forest, SVM
with linear kernel (SVM linear), and SVM with RBF kernel
(SVM RBF)) for the ASVspoof dataset.

Table 4: Detection accuracy of four classification algo-
rithms for the ASVspoof dataset [7].

Algorithm EER (%)
SVM RBF 11.6

Random forest 23.4
SVM linear 15.8

kNN 19.1

Among classification algorithms tested, SVM RBF pro-
duced the best EER results (11.6%) while providing training
and testing times comparable with other classification algo-
rithms. Therefore, we recommend the use of SVM RBF. All

https://sites.google.com/site/bosaristoolkit/
https://sites.google.com/site/bosaristoolkit/

subsequent evaluations were conducted using the SVM RBF
classifier.

7.3 Attack detection accuracy
We show the ROC curve and AUC in Figure 8 to demonstrate
the classification performance of Void under various threshold
settings. Void achieved an AUC of 0.99 and 0.94 for our
dataset and ASVspoof dataset, respectively. Even though the
live-human to replay attack sample ratios are low in both
datasets, the strong ROC curve and AUC results indicate
that Void would likely achieve low error rates when more
balanced datasets are used (see Figure 8). Void achieved an
EER of 0.3% and 11.6% for our dataset and ASVspoof dataset,
respectively1. We note that this EER result (11.6%) would
rank Void as the second best solution (EER 12.34%) in the
ASVspoof 2017 competition [10].

False positive rate

0 0.2 0.4 0.6 0.8 1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0

0.2

0.4

0.6

0.8

1

Our dataset

ASVspoof 2017 dataset

AUC: 0.94

EER: 11.6%

AUC: 0.99

EER: 0.3%

Figure 8: Accuracy results of Void.

To compare Void against existing solutions from the
ASVspoof competition with respect to latency, space com-
plexity, and accuracy, we implemented (used existing code if
available) the two classification models described below, and
evaluated them using the ASVspoof evaluation set. Table 5
summarizes those evaluation results.

Table 5: Average training/testing times, number of fea-
tures used, average memory used, and performance of
classification models on the ASVspoof dataset [7].

Measure Void CQCC-GMM [7] STFT-LCNN [30]

Time
Extraction (sec.) 0.035 0.059 3e−4

Training (sec.) 0.283 6,599.428 15,362.448
Testing (sec.) 0.035 0.062 0.270

Memory
Features 97 14,020 84,770
Memory size (MB) 1.988 173.707 304.176

Accuracy EER 11.6% 23.0% 7.4%

CQCC-GMM. This is the baseline approach recom-
mended in the 2017 ASVspoof competition [7] that uses

1We additionally provide precision, recall, and F1-score measures for our
dataset because the numbers for live-human samples and attack samples are
imbalanced; the precision, recall, and F1-score are 95.8%, 85.2%, and 89.2%,
respectively.

CQCC as the main features, and 512-component Gaus-
sian Mixture Model (GMM) as the classification algorithm.
CQCC-GMM achieved 23% EER on the ASVspoof evalu-
ation set [7] – demonstrating significantly larger EER com-
pared to Void.

STFT-LCNN. To evaluate the best performing model from
the ASVspoof competition, we implemented the Light Convo-
lutional Neural Network (LCNN) structure described in [30]
and used STFT as the main features – this is one of the
two deep learning models used. We contacted the authors
from [30] and used the exact LCNN hyper-parameters and
STFT parameters they recommended. Their model consists
of 5 convolutional layers, 4 network in network layers, 10
max-feature-map layers, 4 max-pooling layers, and 2 fully
connected layers as described in [30]. STFT-LCNN achieved
7.4% EER on the ASVspoof evaluation set [7] according to
the EER result presented in [30]2.

7.4 Latency and model complexity results

We compare Void against CQCC-GMM and STFT-LCNN
with respect to the latency and model complexity (see Table 5).
Feature extraction time (“Extraction”) represents the average
time taken to extract features from a single voice sample.
Training time (“Training”) refers to the time taken to train
a model (using the extracted features). Testing time refers
to the average time taken to extract features from a single
voice sample and perform classification using those features.
Memory size, in megabytes, refers to the average memory
used by each model to classify a given sample.

As for the space complexity, we count the number of fea-
tures extracted from a single voice sample. The number of
features used by Void is just 97, compared to 14,020 features
used by our CQCC-GMM implementation and 84,770 fea-
tures used by STFT-LCNN. In consequence, Void only used
1.988 megabytes of memory on average to classify a given
voice sample. CQCC-GMM used 173.707 megabytes and
STFT-LCNN used 304.176 megabytes of memory.

As for the execution time overheads, on average, Void took
0.283 seconds for training, and 0.035 seconds for testing.
Void outperformed all other solutions with respect to both the
training time and testing time. The average testing time for
STFT-LCNN was 0.27 seconds.

These observations clearly indicate that Void is a much
more efficient, faster, and lighter solution compared to other
solutions. Void is the only solution that would satisfy the
strict latency, and model and feature complexity requirements
described in Section 3.1.

2Although we used the same hyper-parameters and model layouts descried
in [30], our own implementation achieved 12.7% EER – higher than the 7.4%
EER presented in [30].

7.5 Using Void as an ensemble solution
Our discussions with several speech recognition engineers at a
large IT company revealed that filter bank and MFCC are the
only two spectral features used for speech recognition. Since
MFCC would be extracted and available anyway (and would
not require any additional feature extraction time), we imple-
mented an ensemble solution that consists of MFCC-GMM
and Void, and evaluated its accuracy against the ASVspoof
evaluation set. MFCC-GMM alone achieves 25.5% EER on
the evaluation set, and uses 8,053 features – it is much lighter
than CQCC. Its average testing time was around 0.03 seconds.

We used a logistic regression model to compute the opti-
mal weight for each model: 0.7 for Void, and 0.3 for MFCC-
GMM. This ensemble approach achieved an EER of 8.7%,
further demonstrating the effectiveness of Void and its poten-
tial benefits when combined with other lightweight models.
Again, our ensemble solution would have ranked second in
the ASVspoof competition, and not too far from the best so-
lution that achieved an EER of 6.74%. The total testing time
would be around 0.06 seconds per voice sample.

7.6 Effects of variances
In this section, we analyze the effects of four key variances –
distances between target devices and attack devices, human
gender, loudspeaker types and cross data training – on the
performance of Void. We trained a single classifier using our
own dataset; the train set comprised of 9,000 live-human sam-
ples and 9,000 replay attack samples. We used this classifier
to evaluate Void’s performance under distance and gender
variances.

7.6.1 Attack source distances

To analyze the effects of varying distances between attacker
and target device, voice samples were collected using three
different distances: 15cm, 130cm, and 260cm. For testing,
we used the remaining replayed samples, randomly choosing
1,920, 1,919, 1,920 samples, respectively, from each of the
3 categories (15cm, 130cm, 260cm), and 1,209 live-human
samples. We did not experiment with distances that are too
far from target devices since attackers would have to use very
loud volumes, which would be easily noticed.

Table 6: Effects of variances on detection accuracy.

Diversity Dimension Test samples RoC Acc.(%) Prec.(%) Rec.(%) F1(%) EER(%)

Distance
15cm 1,920 0.99 99.6 98.51 99.16 98.93 0.72
130cm 1,919 0.99 99.7 98.18 99.58 98.87 0.85
260cm 1,920 0.99 99.9 98.01 100 98.99 0.15

Gender Male 1,940 0.99 98.9 98.07 99.24 98.66 0.69
Female 2,062 0.99 98.9 97.76 99.49 98.62 0.97

Evaluation results are presented in Table 6. We show that
all F1 scores are greater than 98%, and all EERs are less
than 1%. For 15cm, Void achieved 99.6% attack detection

rate and an EER of 0.72%. For 130cm, Void achieved 99.7%
attack detection rate and an EER of 0.85%. For 260cm, Void
achieved 99.9% attack detection rate and an EER of 0.15%.
Those results demonstrate that distance variations have mini-
mal impact on the performance of Void.

7.6.2 Gender

Since female voices have typically higher fundamental fre-
quencies than male voices [21, 22], the power distribution
patterns may also vary between males and females. To an-
alyze the effects of changing gender, we tested Void sepa-
rately on (1) 1,940 male live-human voice and attack samples,
and (2) 2,062 female live-human voice and attack samples.
We selected attack samples that were replayed using the V-
MODA speaker with 15cm recording distance. Ten fold cross-
validation was used to evaluate Void classifiers.

Again, gender variances did not really influence Void’s
performance (see Table 6): accuracy and F1 scores are greater
than 98%, and EER is below 1%.

7.6.3 Loudspeaker types

To demonstrate Void’s performance against high quality
speakers, we experimented with various types of loudspeak-
ers. For our dataset and the ASVspoof dataset, we used the
trained models described in Section 7.6 and 7.1, respectively.
For evaluation, we tested those two models separately on
the samples collected through each of the speakers listed in
Table 7.

Table 7: Void’s performance on different loudspeakers.

Dataset Loudspeaker Samples Detection Acc.(%)

Our dataset

V-MODA 2,198 2,190 99.6
Logitech 2,002 1,990 99.4
Yamaha 1,997 1,996 99.9
Bose 1,997 1971 98.6
Smart TV 24,282 24,152 99.4

ASVspoof
Dynaudio BM5A 430 399 92.7
Behringer Truth B2030A studio monitor 1,381 1,313 95.1
Genelec 6010A studio monitor 198 160 81.1

Void achieved over 98.5% detection accuracy for all the
loudspeakers in our dataset. As for the ASVspoof dataset,
it showed varying performance against high quality loud-
speakers: the detection accuracy for Dynaudio BM5A and
Behringer Truth B2030A studio monitor were 92.7% and
95.1%, respectively; the detection accuracy dropped signifi-
cantly to 81.1% against Genelec 6010A studio monitor.

7.6.4 Cross data training

For cross data training, we trained Void on the live-human
voice and replay attack samples collected from one specific
dataset, and evaluated the performance of Void against a dif-
ferent unseen (with respect to the human participants and

playback device types) dataset. For the training dataset, we
used a single, fixed set of 26,965 voice samples collected
from 20 male participants, and replayed through the V-MODA
speakers. For testing, we considered the following four sce-
narios: (1) we used 20 unseen male participants’ voice sam-
ples to perform replay attacks; the V-MODA speaker was
used as a playback device; (2) we used voice samples col-
lected from 20 unseen female participants, and replayed them
through the V-MODA speaker; (3) we used voice samples
collected from 20 unseen female participants, and replayed
them through the Bose and Yamaha unseen speakers; and (4)
we used voice samples collected from 20 unseen male partici-
pants, and replayed through the Bose, Yamaha, and Logitech
unseen speakers.

Table 8: Effects of cross training on detection accuracy.

Diversity Dimension Test samples RoC Acc.(%) EER(%)

Cross data

Scenario 1 29,956 0.99 100 0.04
Scenario 2 28,224 0.98 96.4 1.9
Scenario 3 58,062 0.98 82.1 4.8
Scenario 4 58,956 0.99 93.2 3.1

We only changed one variable in the first two scenarios but
changed all variables in the third and fourth scenario. Table 8
shows the evaluation results for those scenarios. For scenario
1, Void achieved 100% attack detection rate and an EER of
0.04%. For scenario 2, Void achieved 96.4% attack detection
rate and an EER of 1.9%. For scenario 3, Void achieved 82.1%
attack detection rate and an EER of 4.8%. For scenario 4, Void
achieved 93.2% attack detection rate and an EER of 3.1%.
As demonstrated from the detection accuracy reductions in
scenarios 3 and 4, the performance of Void would degrade as
we introduce more variances.

7.7 Replay attacks in unseen conditions

To test Void under various unseen and unexpected environmen-
tal conditions, we installed the speakers and recording devices
in an office building. This common area consists of meeting
rooms, elevators, entrances and exits, rest rooms, dining areas,
information desks, and so on. We replayed all human voice
samples (see Section 6.1) on 5 different playback speakers:
Galaxy S8 and S9, V-MODA, Bose, and Logitech speakers.
We replayed the voice samples using two different volumes,
normal and loud, and recorded them using two Galaxy S8
phones, located 30cm and 140cm away from the speakers.
The entire recording sessions took about 10 full days to com-
plete. After removing improperly recorded samples, we were
left with 119,996 replay attack samples with a huge variety
of background noises and situations.

We evaluated the performance of Void against those unseen
replay attack samples. Even with such an unexpected and
diverse set of replay configurations, Void was able to correctly

detect 96.2% of the attacks, showing its robustness in unseen
conditions.

8 Robustness against adversarial attacks

We evaluated Void against hidden/inaudible voice command,
voice synthesis, EQ manipulation attacks, and combining re-
play attacks with live-human voices. To measure the attack
detection rates, we trained a Void classifier with all of our
own replay attack and human voice datasets (see Section 6),
and used that classifier to classify given set of attack sam-
ples described below. The detection rates of Void against all
adversarial attacks are presented in Table 9.

Table 9: Detection rates against adversarial attacks.

Attack Dataset # Samples Acc. (%)
Hidden Our dataset 1,250 99.7
Inaudible Ultrasonic speaker 311 100
Synthesis Our Tacotron dataset 15,446 90.2

EQ manipulation
Strategy 1 350 89.1
Strategy 2 430 86.3

Combining Our dataset with human noise 3,600 98.2

8.1 Hidden voice command attacks
Hidden voice commands refer to commands that can not be in-
terpreted by human ears but can be interpreted and processed
by voice assistant services [24, 25]. Hidden voice commands
typically add more noise-like frequencies to original voice
samples during obfuscation, which should increase the overall
signal power linearity.

0 3 6 9 12 15

Frequency, kHz

0

5

10

15

20

S
ig

n
a

l
p

o
w

e
r Live-human

0 3 6 9 12 15

Frequency, kHz

0

5

10

15

20

S
ig

n
a

l
p

o
w

e
r Hidden voice sample

Peaks mean location: 0.8kHz

 = 0.97

q = 2.40

 = 0.70

q = 38.25

Peaks mean

location: 2.6kHz

Figure 9: Power spectrum and spectral features represent-
ing live-human voice (left) and hidden voice (right) for a
sample utterance “Artificial intelligence is for real.”

Figure 9 compares the signal power distributions for live-
human voice and hidden voice command generated with a
phrase “Artificial intelligence is for real.” The original com-
mand is shown on the left, and the obfuscated hidden com-
mand, which was played through a loudspeaker, is shown on
the right. Unlike the live-human case in which the power dis-
tribution shows a non-linear behavior (mostly concentrated
below 2 kHz), the linearity coefficients for the hidden voice

samples indicate a more linear behavior (i.e., ρ: 0.97 and
q: 2.40). The high power frequency characteristics are also
different, which is another indicator for a replay attack.

To evaluate Void against hidden command attacks, we
recorded hidden voice command samples using the black-box
attack methods demonstrated in [25]. We used 1,250 samples
from our own replay attack dataset to generate the attack sam-
ples. Void was highly effective against hidden voice command
attacks, demonstrating attack detection rate of 99.7% for our
replay attack dataset (see Table 9).

8.2 Inaudible voice command attacks

Inaudible voice command attacks involve playing an ultra-
sound signal with spectrum above 20kHz, which would be
inaudible to human ears. Inaudible voice commands are typ-
ically played through ultrasonic speakers. Due to the non-
linear characteristics of hardware – microphones in this case
– the received voice signals are shifted to lower frequen-
cies (down-modulation) with much lower power. To eval-
uate the performance of Void against inaudible attacks, we
implemented an inaudible attack with 347 popularly used
Amazon Alexa commands, targeting Echo Dot as the con-
sumer device. We used Google’s Text to Speech service
(https://pypi.org/project/gTTS/) to convert text com-
mands into speech data. We then modulated voice commands
using amplitude modulation with high level frequency of
21kHz. After modulation, the “BatSound L400 ultrasound
speaker” (http://batsound.com/?p=12) was used to re-
play the modulated voice samples. 311 out of 347 com-
mands were successfully recognized and processed by Ama-
zon Alexa. We stored those 311 samples in the “.M4A” file
format and used them as the attack set. Void achieved 100%
detection rate against inaudible voice command attacks (see
Table 9).

8.3 Voice synthesis attacks

To test Void’s performance against voice synthesis attack, we
used open source voice modeling tools called “Tacotron” [1]
and “Deepvoice 2” [2] to train a user voice model with 13,100
publicly available voice samples (https://keithito.com/
LJ-Speech-Dataset/). We then used the trained model to
generate 1,300 synthesis voice attack samples by feeding in
Bixby commands as text inputs.

After attack data generation, we played those synthesis
attack samples through four different speakers: Galaxy S8, V-
MODA, Logitech 2.1 Ch., and Yamaha 5.1 Ch. speakers were
used. For each speaker type, we placed Galaxy S8 in three
different distances as described in Section 6.2, and recorded
synthesis attack samples. After removing samples that were
not properly recorded, we were left with a final set of 15,446
synthesis attack samples and tested them on Void.

Void achieved 90.2% attack detection rate against this set,
demonstrating its potential in detecting voice synthesis at-
tacks. However, we note that this is a preliminary result, and
further tests need to be performed with test sets generated
through models trained on more users.

8.4 Audio EQ manipulation attacks

Since Void leverages spectral power patterns for attack detec-
tion, an advanced attacker who is aware of the classification
features used by Void may try to craft attack commands using
audio EQ programs. EQ manipulation is a process commonly
used for altering the frequency response of an audio system
by leveraging linear filters. An attacker’s goal would be to
artificially create attack commands that show power patterns
similar to those of live-human voices. By leveraging audio
equalization, an attacker could intentionally manipulate the
power of certain frequencies to mimic spectrum patterns ob-
served in live-human voices.

To demonstrate the robustness of Void against such EQ
manipulation attacks, we used Audacity (https://www.
audacityteam.org/) to generate audio samples that mimic
decay and peak patterns in spectral power like live human
voices under the following two strategies.

The first attack strategy involved removing background
noises from audio samples because the samples were origi-
nally recorded with various background noises present (e.g.,
noises generated from fans, refrigerators, or computers). To
reduce noise in samples, we used noise reduction rate of 12
dB, and set frequency smoothing parameter to 3. We then
boosted power in frequencies less than or equal to 500Hz, and
reduced power in frequencies above 500Hz to mimic the char-
acteristics of live-human voices. Using 350 attack samples
from the ASVspoof dataset, we manually crafted 350 EQ ma-
nipulation attack samples based on this power manipulation
technique. Void correctly classified 89.1% of them as attacks.
The second attack strategy involved applying bass boost to in-
crease power in low frequencies between 20Hz and 100Hz to
about an average power of 9.5 dB. This power increase would
produce more fluctuations in the low frequencies and power
patterns similar to those of live-human voices. Audio signals
are then normalized with maximum amplitude. Finally, a low
pass filter (frequency 1kHz) is applied. We used 430 attack
samples from the ASVspoof dataset, and manually crafted
430 EQ manipulation attack samples using this technique.
Void correctly classified 86.3% of them as attacks.

We found that the performance of Void was rather degraded
against EQ manipulation attacks. However, based on our man-
ual EQ manipulations, we realized that it is quite hard to
intentionally craft power patterns that mimic the patterns of
live-human voices because most loudspeakers add their own
non-linear distortions at low frequencies that cannot easily
be controlled by attackers [34]. For instance, it is difficult to
craft a sound signal that has desired power peaks at certain fre-

https://pypi.org/project/gTTS/
http://batsound.com/?p=12
https://keithito.com/LJ-Speech-Dataset/
https://keithito.com/LJ-Speech-Dataset/
https://www.audacityteam.org/
https://www.audacityteam.org/

quency ranges even with dedicated manipulation of spectral
power patterns.

8.5 Combining replay attacks with live-
human voices

To evade detection by Void, attacker can try to simply combine
replay attacks with live human voices. For instance, when a
command is playbacked through a loudspeaker, a live-human
can start uttering some random phrases/commands at the same
time.

To analyze the effects of adding live-human voices while
replaying attack commands (i.e., both replayed commands
and human voices are simultaneously received by a target
voice assistant), we recorded additional replay attack samples
with two people – both males – continuously chatting near the
recording devices. We randomly selected 20 voice samples
recorded from 6 participants, and used 6 playback speakers
to perform replay attacks: Galaxy S8/S9, Bose, V-MODA,
Logitech, and Yamaha speakers. We used three Galaxy S8
and three S9 recording devices, which were spread out and
located 1-2m away from the loudspeakers. The two people
were sitting about 1-2m away from the recording devices,
continuously chatting with their normal voices throughout all
recording sessions. Since Void is not responsible for classi-
fying commands that are not properly recognized by voice
assistants, we ran all recorded samples through a speech to
text translation engine (“Google Speech Recognition”), and
removed commands that it failed to recognize – we were left
with 3,600 attack samples to test with.

Among those samples, Void correctly detected 3,536 at-
tack samples, achieving a detection accuracy of 98.2%. This
result shows that overlapping live-human utterances cannot
significantly affect the detection accuracy.

9 Discussion

9.1 Latency and accuracy requirements
The ASVspoof 2017 competition did not measure model and
feature complexity nor time taken to train and classify given
voice samples – the primary objective was to achieve lowest
possible EERs. Consequently, most of the submitted solu-
tions [7] used multiple deep learning models (as an ensemble
solution) and heavy classification features to minimize the
EERs – such solutions sit uneasily with real-world near-zero-
second latency and model complexity requirements.

As shown from our latency results (see Section 7.4), Void
is much lighter, faster, and simpler than other top perform-
ing solutions as well as the baseline CQCC-GMM solution
– many ensemble solutions used CQCC-GMM as the base-
line model. Void uses a single classification model and just
97 features. Compared to STFT-LCNN, Void uses 153 times
less memory and is about 8 times faster in detection. Void is

1.8 times faster and uses 87 times less memory compared to
the baseline CQCC-GMM solution. Void’s feature size and
testing time performances (shown in Section 7.4) sit more
comfortably with the near-zero-second latency and model
complexity requirements. While being lightweight, Void still
achieves an EER of 11.6%, ahead of the second best solution
in the ASVspoof competition [10]. Although this is higher
than the 10% EER requirement, our ensemble solution that
uses MFCC-GMM (MFCC is moderately light, and is already
being used by speech recognition services) achieves 8.7%
EER, and satisfy the EER requirement. Further, we demon-
strated 0.3% EER against our own dataset.

Being mindful of how light Void is, another possible de-
ployment scenario would involve deploying the Void classifier
at the device level: when a user submits a voice command, the
voice assistant running on the user’s device would first make
a voice liveness decision, and drop attack-like commands im-
mediately. With this type of on-device deployment, we would
not introduce any new detection (computational) burden on
servers.

9.2 Low-incidence population
In practice, Void would be used by a low-incidence population
where the number of replay attacks being performed would
be much smaller than the number of legitimate uses. Even if
Void is configured with a threshold value to minimize false
rejection rates (e.g., lower than 5%), users might be annoyed
by infrequent voice command rejections. Hence, when an
attack is detected, users should be asked to perform explicit
authentication (e.g., uttering voice passwords) to still proceed
with a suspicious command if authentication is successful.
Further, Kwak et al. [33] shows that about 90% of existing
mobile voice assistant users use less than 20 commands per
month – for those light users, there will only be about five
falsely rejected commands every 5 months of use.

However, the incidence level would be quite different when
voice assistants are used in homes, e.g., through a smart
speaker. This is because there would be frequent loudspeaker
noises being generated from TV speakers (e.g., [13]) and
standalone speakers. Voice assistants would be stressed with
much larger volumes of loudspeaker noises (e.g., TV pro-
grams or music being played), and be expected to accurately
detect and disregard them. Accurate detection and filtering
of loudspeaker noises would improve the reliability of us-
ing voice assistants at homes (lower false acceptances), and
significantly improve efficiency of speech to text translation
engines as loudspeaker noises would not be analyzed.

9.3 Limitations
We tested Void against the ASVspoof dataset (see Section 6.3),
which consists of 26 different playback devices and 25 differ-
ent recording devices (microphones), including studio moni-

tors and headsets, and studio-quality condenser microphones.
Our results in Section 7.6.3 show that Void’s performance
could be downgraded when high quality speakers, such as ex-
pensive studio monitors, are used to replay recorded samples.
Our audio EQ manipulation attack results (see Section 8.4)
showed that carefully crafted adversarial attacks that involve
altering frequency responses, or exploiting SVM gradients
may be performed to compromise Void. However, such at-
tacks would require strong signal processing expertise.

10 Related work

Recent studies have demonstrated that voice assistants are
prone to various forms of voice presentation attacks [6,11,12,
20, 23, 33]. Carlini et al. [24, 25] presented hidden voice com-
mand attacks to generate mangled voice commands that are
unintelligible to human listeners but can still be interpreted as
commands by devices. Zhang et al. [18] extended this attack
to make voice commands completely inaudible by modulat-
ing voice commands on ultrasonic carriers. To overcome the
limitations of short attack ranges of inaudible attacks (works
within about 5ft) [18, 19], Roy et al. [20] demonstrated the
feasibility of launching such attacks from longer distances
(i.e., within 25ft range) by using multiple ultrasonic speak-
ers. They striped segments of voice signals across multiple
speakers placed in separate locations.

Many approaches have been proposed to detect machine-
generated voice attacks. “VoiceLive” [27] measures the “time
difference of arrival” changes in sequences of phoneme
sounds using dual microphones available on smartphones.
The measured changes are used to determine the sound origin
of each phoneme (within the human vocal system) for live-
ness detection. VoiceLive was evaluated with 12 participants,
demonstrating 1% EER. Zhang et al. [3] also proposed artic-
ulatory gesture-based liveness detection (analyzing precise
articulatory movements like lip and tongue movements); their
approaches, however, are only applicable to scenarios where
a user is physically speaking near a smartphone’s microphone.
In contrast, Void would work well even when users are a
few meters (speaking distances) away from target devices.
Chen et al. [12] leveraged magnetic fields emitted from loud-
speakers to detect replay attacks. Their approach, however,
requires users to utter a passphrase while moving smartphones
through a predefined trajectory around sound sources. Blue et
al. [14] found that the amount of energy in a sub-bass region
(between 20Hz and 250Hz) can be used to distinguish live
human voices from speaker generated voices. However, their
approach relies on being aware of ambient noise power as a
priori while performing noise filtering – this is necessary to
measure the amount of energy with high accuracy. Therefore,
this technique could be compromised by intentionally control-
ling the ambient noise power that the noise filtering is relying
on. Feng et al. [11] proposed a voice authentication system
that uses a wearable device, such as eyeglasses – collecting

a user’s body surface vibrations, and matching it with voice
signals received by a voice assistant through a microphone.
Although their approach is capable of achieving about 97%
accuracy, they rely on an additional hardware that users have
to carry.

An extensive study was conducted to analyze the perfor-
mances of machine learning-based replay attack detection
techniques proposed as part of the 2017 ASVspoof competi-
tion [7]. According to the study findings, the equal error rates
(EER) varied from 6.7% to 45.6% [30] – most solutions used
an ensemble approach, and used CQCC-GMM as a baseline
model, which alone is complex and uses about 14,000 fea-
tures. We implemented STFT-LCNN [30], which is one of the
two deep learning models used by the top performing solution
from the competition. Our evaluations showed that despite
its low EER, STFT-LCNN alone is unacceptably heavy and
slow. Likewise, existing solutions have been designed merely
to minimize EERs.

Tom et al. [17] achieved 0% EER on the ASVspoof evalua-
tion set using Residual Network as the deep learning model
and group delay grams as the classification features. Group de-
lay (GD) grams are obtained by adding a group delay function
over consecutive frames as a time-frequency representation.
However, they used another external dataset to pre-train a
model, and applied transfer learning technique on that model
using the ASVspoof train set. Since their model training meth-
ods and assumptions are not consistent with how ASVspoof
models are suppose to be trained (i.e., they assume other
datasets are available), we do not directly compare Void with
their solution. We implemented their model as close as pos-
sible to the descriptions provided in the paper, and analyzed
its time and space complexity as described in Appendix I.
Their model uses 786,432 features compared to Void’s 97
features, and uses about 1,195MB of memory on average for
classifying a sample. Void uses just 2MB.

Consequently, multiple complex models and heavy features
have been used without considering any latency and model
complexity requirements described in Section 3.1. Void was
designed to use a small number of features, and guarantee fast
training and classification times as well as model simplicity.
Further, all the literature discussed above present model struc-
ture and accuracy results without providing insights into the
spectral power features and their characteristics – replying
on deep learning techniques for feature extraction has this
limitation. In contrast, we explain the spectral power patterns
and non-linearity for loudspeaker detection as part of feature
engineering (see Section 4).

11 Conclusion

Void analyzes the spectral power patterns of voice signals to
accurately detect voice replay attacks. Compared with existing
methods using multiple, heavy classification models, Void
runs on a single efficient classification model with 97 features

only, and does not require any additional hardware.
Our experiments, conducted on two large datasets col-

lected under numerous varying conditions (demographics,
speaker/microphone types, and background noises), showed
that Void can achieve 0.3% EER on our own dataset, and
11.6% EER on the ASVspoof evaluation set. On average,
Void took 0.03 seconds to classify a given voice sample, and
used just 1.98 megabytes of memory. Void is about 8 times
faster, and 153 times lighter (with respect to feature size) than
the top performing LCNN-based solution. Also, our ensemble
solution (that uses moderately light, already available MFCC
features) achieves 8.7% EER – making it a much more practi-
cal, and attractive solution for businesses to consider. More-
over, Void is resilient to adversarial attacks including hidden
command [24, 25], inaudible voice command [18–20], voice
synthesis [6, 12], EQ manipulation, and combining replay at-
tacks with live-human voices achieving over 86% detection
rates for all of those attack types.

Acknowledgment

This work was supported by Samsung Research and NRFK
(2019R1C1C1007118). The authors would like to thank all the
anonymous reviewers and Carrie Gates for their valuable feedback.
Note that Hyoungshick Kim is the corresponding author.

References

[1] Y. Wang, R.J. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss, N.
Jaitly, Z. Yang, Y. Xiao, Z. Chen, S. Bengio, Q. Le, Y. Agiomyr-
giannakis, R. Clark, R. A. Saurous, “Tacotron: Towards End-
to-End Speech Synthesis”, in Proceedings of the 18th INTER-
SPEECH, 2017.

[2] A. Gibiansky, S. Arik, G. Diamos, J. Miller, K. Peng, W. Ping, J.
Raiman, Y. Zhou, “Deep Voice 2: Multi-Speaker Neural Text-to-
Speech”, in Advances in Neural Information Processing Systems
30, pp. 2966-2974, 2017.

[3] L. Zhang, S. Tan, J. Yang, “Hearing Your Voice is Not Enough:
An Articulatory Gesture Based Liveness Detection for Voice
Authentication”, in Proceedings of the 24th ACM SIGSAC Con-
ference on Computer and Communications Security, 2017.

[4] S. McCandless, “An algorithm for automatic formant extraction
using linear prediction spectra”, in IEEE Transactions on Acous-
tics, Speech, and Signal Processing, vol. 22, no. 2, pp. 135-141,
1974.

[5] T. F. Li, S. Chang, “Speech recognition of mandarin syllables
using both linear predict oding cepstra and Mel frequency cep-
stra”, in Proceedings of the 19th Conference on Computational
Linguistics and Speech Processing, 2007.

[6] A. Janiki, F. Alegre, and N. Evans, “An assessment of automatic
speaker verification vulnerabilities to replay spoofing attacks”,
in Security and Communication Networks, pp. 3030-3044, 2016.

[7] T. Kinnunen, M. Sahidullah, H. Delgado, M. Todisco, N. Evans,
J. Yamagishi, and K. A. Lee, “The ASVspoof 2017 Challenge:

Assessing the Limits of Replay Spoofing Attack Detection”, in
Proceedings of the 18th INTERSPEECH, 2017.

[8] H. Delgado, M. Todisco, M. Sahidullah, N. Evans, T. Kinnunen,
K. A. Lee, J. Yamagishi, “ASVspoof 2017 Version 2.0: meta-
data analysis and baseline enhancements”, in Proceedings of the
Speaker and Language Recognition Workshop, 2018.

[9] T. Kinnunen, N. Evans, J. Yamagishi, K. A. Lee, M.
Sahidullah, M. Todisco, and H. Delgado, “ASVspoof
2017: Automatic Speaker Verification Spoofing and
Countermeasures Challenge Evaluation Plan”, [On-
line:] https://www.asvspoof.org/data2017/
asvspoof-2017_evalplan_v1.2.pdf, 2017.

[10] T. Kinnunen, M. Sahidullah, H. Delgado, M. Todisco, N.
Evans, J. Yamagishi, and K. A. Lee, “The ASVspoof 2017
Challenge: Assessing the Limits of Replay Spoofing Attack
Detection”, [Online:] https://www.asvspoof.org/
slides_ASVspoof2017_Interspeech.pdf, 2017.

[11] H. Feng, K. Fawaz, and K. G. Shin, “Continuous Authentica-
tion for Voice Assistants”, in Proceedings of the 23rd Annual
International Conference on Mobile Computing and Network-
ing, 2017.

[12] S. Chenyz, K. Reny, S. Piaoy, C. Wang, Q. Wangx, J. Weng, L.
Suy, and A. Mohaisen, “You Can Hear But You Cannot Steal: De-
fending against Voice Impersonation Attacks on Smartphones”,
in Proceedings of IEEE 37th International Conference on Dis-
tributed Computing Systems, 2017.

[13] A. Liptak, “Amazon’s Alexa started ordering people doll-
houses after hearing its name on TV”, [Online:] https:
//www.theverge.com/2017/1/7/14200210/
amazon-alexa-tech-news-anchor-order-dollhouse,
2017.

[14] L. Blue, L. Vargas, and P. Traynor, “Hello, Is It Me You’re
Looking For?: Differentiating Between Human and Electronic
Speakers for Voice Interface Security” in Proceedings of the
11th ACM Conference on Security & Privacy in Wireless and
Mobile Networks, 2018.

[15] D. Luo, H. Wu, and J. Huang, “Audio recapture detection
using deep learning”, in Proceedings of the 3rd IEEE China
Summit and International Conference on Signal and Information
Processing, 2015.

[16] Sound Engineering Academy, “Human Voice Frequency
Range”, [Online:] http://www.seaindia.in/blog/
human-voice-frequency-range/

[17] F. Tom, M. Jain and P. Dey, “End-To-End Audio Replay Attack
Detection Using Deep Convolutional Networks with Attention”,
in Proceedings of the 19th INTERSPEECH, 2018.

[18] G. Zhang, C. Yan, X. Ji, T. Zhang, T. Zhang, W. Xu, “Dolphi-
nAtack: Inaudible Voice Commands”, in Proceedings of the 24th
ACM SIGSAC Conference on Computer and Communications
Security, 2017.

[19] L. Song, P. Mittal, “POSTER: Inaudible Voice Commands”, in
Proceedings of the 24th ACM SIGSAC Conference on Computer
and Communications Security, 2017.

[20] N. Roy, S. Shen, H. Hassanieh, R. R. Choudhury, “Inaudible
Voice Commands: The Long-Range Attack and Defense”, in

https://www.asvspoof.org/data2017/asvspoof-2017_evalplan_v1.2.pdf
https://www.asvspoof.org/data2017/asvspoof-2017_evalplan_v1.2.pdf
https://www.asvspoof.org/slides_ASVspoof2017_Interspeech.pdf
https://www.asvspoof.org/slides_ASVspoof2017_Interspeech.pdf
https://www.theverge.com/2017/1/7/14200210/amazon-alexa-tech-news-anchor-order-dollhouse
https://www.theverge.com/2017/1/7/14200210/amazon-alexa-tech-news-anchor-order-dollhouse
https://www.theverge.com/2017/1/7/14200210/amazon-alexa-tech-news-anchor-order-dollhouse
http://www.seaindia.in/blog/human-voice-frequency-range/
http://www.seaindia.in/blog/human-voice-frequency-range/

Proceedings of 15th USENIX Symposium on Networked Systems
Design and Implementation, 2018.

[21] I. R. Titze, “Principles of Voice Production”, in Prentice Hall,
1994.

[22] R. J. Baken, “Clinical Measurement of Speech and Voice”, in
Taylor & Francis, 2000.

[23] S. Panjwani and A. Prakash, “Crowdsourcing Attacks on Bio-
metric Systems”, in Proceedings of the 10th Symposium On
Usable Privacy and Security, 2014.

[24] T. Vaidya, Y. Zhang, M. Sherr, and C. Shields, “Cocaine Noo-
dles: Exploiting the Gap between Human and Machine Speech
Recognition”, in Proceedings of the 9th USENIX Workshop on
Offensive Technologies, 2015.

[25] N. Carlini, P. Mishra, T. Vaidya, Y. Zhang, M. Sherr, C. Shields,
D. Wagner, and W. Zhou, “Hidden Voice Command”, in Pro-
ceedings of the 25th USENIX Security Symposium, 2016.

[26] P. Castiglioni, “Levinson-durbin algorithm”, in Encyclopedia
of Biostatistics, 2005.

[27] L. Zhang, S. Tan, J. Yang, and Y. Chen, “VoiceLive: A
Phoneme Localization based Liveness Detection for Voice Au-
thentication on Smartphones”, in Proceedings of the 23rd ACM
SIGSAC Conference on Computer and Communications Secu-
rity, 2016.

[28] L. Breiman, “Random Forests”, in Machine Learning, vol. 45,
no. 28, pp. 5–32, 2001.

[29] ASVspoof, [Online:] https://datashare.is.ed.ac.
uk/handle/10283/2778

[30] G. Lavrentyeva, S. Novoselov, E. Malykh, A. Kozlov, O. Ku-
dashev, V. Shchemelinin, “Audio replay attack detection with
deep learning frameworks”, in Proceedings of the 18th INTER-
SPEECH, 2017.

[31] X. Zhao, Y. Wang, and D. Wang, “Robust speaker identification
in noisy and reverberant conditions”, in IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP),
2014.

[32] G. Valenti, A. Daniel, and N. Evans, “End-to-end automatic
speaker verification with evolving recurrent neural networks”,
in Odyssey 2018 The Speaker and Language Recognition Work-
shop, 2018.

[33] I. Kwak, J. Huh, S. Han, I. Kim, and J. Yoon, “Voice presen-
tation attack detection through text-converted voice command
analysis”, to appear in ACM CHI Conference on Human Factors
in Computing Systems, 2019.

[34] W. Frank and R. Reger and U. Appel, “Loudspeaker
nonlinearities-analysis and compensation”, in Conference
Record of the Twenty-Sixth Asilomar Conference on Signals,
Systems Computers, 1992.

[35] The Audibility of Distortion At Bass
Frequencies, [Online:] https://www.
audioholics.com/loudspeaker-design/
audibility-of-distortion-at-bass, 2015.

[36] P. Gil-Cacho, T. V. Waterschoot, and M. Moonen, and S.
Jensen, “Study and characterization of odd and even nonlin-
earities in electrodynamic loudspeakers”, in Proceedings of the
127th Audio Engineering Society, 2009.

[37] V. Gunnarsson, “Assessment of nonlinearities in loudspeakers”,
in Chalmers University of Technology, 2010.

A Classifying live-human voices and voices re-
played through in-built speakers with three
signal power features

Figure 10 shows the spectral power features (power-sum in
each frequency) of 800 voice samples: 400 were live-human
samples, and the other 400 were samples replayed through 11
in-built smartphone speakers. As shown in Figure 10, three
signal power features, µpeak, ρ and q, look noticeably differ-
ent, suggesting that they could be effective in classifying
live-human voices and in-built speakers (those features are
explained in Section 5.3).

020

Quadratic coef. (q)

4060800.6

0.7

0.8

Corr. coef. (ρ)

0.9

0

10

20

30

40

1

µ
p

e
a

k
s

Live-human

In-built speakers

Figure 10: Integral signal power features used to classify
live-human voices and voices replayed through 11 in-built
smartphone speakers.

B Power patterns for different loudspeakers

Figure 11 shows power patterns for a live-human voice and
8 different loudspeakers (from our dataset and ASVspoof
2017 dataset). In the live-human voice sample (top left), there
are four distinct peaks in the power pattern below 2 kHz.
Except for Genelec 6010A studio monitor, and Focus
Scarlett 2i2 audio, all other high quality speakers show
a single sharp peak or small peaks only in their power patterns.
As for Genelec and Focus Scarlett speakers, the power pat-
terns below 2 kHz are similar to those of live-human patterns.
To deal with such studio-level quality speakers, Void employs
other feature sets as explained in Section 5.3.

C Summary of linearity degree features

For the linearity degree of powcdf, we compute the following
two features: Pearson correlation coefficients ρ and quadratic
curve fitting coefficients q of powcdf (see Table 10).

https://datashare.is.ed.ac.uk/handle/10283/2778
https://datashare.is.ed.ac.uk/handle/10283/2778
https://www.audioholics.com/loudspeaker-design/audibility-of-distortion-at-bass
https://www.audioholics.com/loudspeaker-design/audibility-of-distortion-at-bass
https://www.audioholics.com/loudspeaker-design/audibility-of-distortion-at-bass

0 2 4 6 8 10

N
o
r
m

a
li
z
e
d
 p

o
w

e
r

0

10

20

30
Live-human

0 2 4 6 8 10
0

20

40

60
Dynaudio BM5A speaker

0 2 4 6 8 10
0

20

40

60
Bose speaker

0 2 4 6 8 10

N
o
r
m

a
li
z
e
d
 p

o
w

e
r

0

20

40

60
Genelec 6010A studio monitor

0 2 4 6 8 10
0

20

40

60
Behringer Truth B2030A studio monitor

0 2 4 6 8 10
0

20

40

60
Genelec 8020C studio monitor

Frequency (kHz)

0 2 4 6 8 10

N
o
r
m

a
li
z
e
d
 p

o
w

e
r

0

10

20

30
Vmoda speaker

Frequency (kHz)

0 2 4 6 8 10

N
o
r
m

a
li
z
e
d
 p

o
w

e
r

0

20

40

60

Genelec 8020C studio monitor (2 speakers)

Frequency (kHz)

0 2 4 6 8 10

N
o
r
m

a
li
z
e
d
 p

o
w

e
r

0

10

20

Focusrite Scarlett 2i2 audio

Figure 11: Power patterns of live-human and different
loudspeakers.

Table 10: Summary of the linearity degree features.

Features Symbol

Cross-correlation coefficients ρ

Quadratic curve-fitting coefficients q

FVLDF = {ρ,q}

We use Pearson correlation coefficient ρ to measure of the
linearity in the signal power pattern. The Pearson correlation
coefficients can be calculated as:

ρ(X ,Y) =
cov(X ,Y)

σX σY
, (1)

where cov is the covariance, and σX and σY represent the
standard deviations of X and Y , respectively. In our exper-
iments X = powcdf and Y is an increasing sequence {yn},
where yn+1− yn = 1.

A polynomial q(x) of degree n = 2 with respective coeffi-
cients are given below as:

q(x) = q1x2 +q2x+q3, (2)

where x = powcdf in the above equation. We use the quadratic
coefficient q1 in our features which is denoted by q for sim-
plicity.

We measure the signal power linearity to show the dif-
ference in power patterns between live-human and in-built
loudspeakers. Table 11 shows mean and standard deviation
of the linearity features of 400 live-human samples and 400
samples replayed through in-built speakers, respectively.

D Summary of high power frequency features

Given the vector < pow > of power density values and the
peak selection threshold ω, we compute the feature vector

Table 11: Means and standard deviations of signal power
linearity features for live-human and in-built speakers.

Source Feature mean stdev

Live-human ρ 0.759 0.059
q 47.960 6.541

In-built speakers ρ 0.854 0.053
q 10.267 7.006

(FVHPF) to capture the dynamic characteristics of spectral
power in higher frequencies (see Table 12).

Table 12: Summary of the high power frequency features.

Features Symbol

#peaks in high-power frequencies Npeaks
Relative frequencies corresponding to peaks µpeaks
Standard deviation of high power frequency location σpeaks

FVHPF = {Npeaks,µpeaks,σpeaks}

Table 13 shows the analysis of those three key features for
6,362 voice samples replayed through 13 standalone speak-
ers, and 3,558 live-human voice samples. The mean num-
ber of peaks (Npeaks) for live-human voices is significantly
greater than those of standalone speakers. Similarly, live-
human voices showed greater mean of relative frequencies cor-
responding to peaks (µpeaks) and standard deviations. These
difference could be analyzed to detect standalone speakers.

Table 13: Means and standard deviations of the high
power frequency features for live-human and standalone
speakers.

Source Features mean stdev

Live-human Npeaks 2.580 3.029
µpeaks 7.377 2.693

Standalone speakers Npeaks 1.695 1.348
µpeaks 5.531 2.110

E Finding the optimal feature set

Table 14 shows a separate evaluation result for different fea-
ture sets. We used the ASVspoof 2017 dataset for evaluation.
We used the train and development sets for training, and used
the evaluatoin set for testing. The results show that each of
the selected feature set achieves an F1-score greater than 80%.
These results, together with the declining EERs observed with
addition of features, demonstrate that all individual features
(FVLFP, FVLDF , FVHPF , and FVLPC) are integral in achieving
an EER of 11.60%.

Table 14: Accuracy evaluation for each selected feature
set (see Section 5.3)

Feature set Acc. (%) Prec. (%) Rec. (%) F1 (%) EER (%)

FVLFP 76.61 75.59 98.04 85.37 19.37
FVLDF 72.14 72.91 95.06 82.52 30.92
FVHPF 73.13 71.61 98.09 82.79 21.47
FVLPC 70.19 68.62 97.64 80.60 22.99
FVLFP + FVLDF + FVHPF 79.51 79.08 97.79 87.44 18.83
FVLFP + FVLDF + FVHPF + FVLPC (Void) 84.33 83.51 98.96 90.58 11.60

F Feature and model parameters

We describe parameters used for recording voice samples,
performing feature engineering, and training classifiers. We
used sampling frequency of 44.1kHz for voice recording. As
for the STFT parameters, we used 1024 as the window length
(recommended to be power of 2), 256 as the hop size, and
4,096 as the number of FFT points. Other parameters needed
to train Void are presented in Table 15.

Table 15: Feature and model parameters.

Class Parameter Value

Voice

Sampling frequency 44.1kHz
Window length 1024
Hop length 256
nfft 496

Void

W 10
ω 0.6
powcd f ’s polynomial order for estimating q 2
Pest ’s estimation using polynomial order 6

SVM Kernel RBF
Kernel scale Auto

G List of playback devices

We used 11 different types of in-built speakers including
smartphones and a smart TV, and four standalone speakers to
replay recorded voice samples (see Table 16).

H List of recording devices

We used 3 different laptops, and 9 different smartphones as
recording devices (see Table 17).

I Implementation of GD-ResNet

Based on the model described in [17], we implemented GD-
ResNet with two stages: the first stage is used to estimate
attention weights from a Global Average Pooling layer, and
the second stage is used to train a ResNet-18 model based
on the GD gram feature with attention weights. Table 18

Table 16: List of playback devices (loudspeakers) used
for replay attack dataset generation.

Name Model

In-built

Galaxy A8 A810S
Galaxy A5 SM-A500x
Galaxy Note 8 SM-N950x
Galaxy S8 SM-G950
Galaxy S8 SM-G955N
Galaxy S9 SM-G960N
iPhone SE A1662
iPhone 6S Plus A1524
iPhone 5S A1519
LG V20 V20 F800
Samsung Smart TV QN49Q7FAM

Standalone
Bose SoundTouch 10
V-MODA REMIX-BLACK
Logitech (2.1 Ch.) Z623
Yamaha (5.1 Ch.) YHT-3920UBL

Table 17: List of recording devices used for human voice
collection, and replay attack dataset generation.

Maker Model

Samsung Notebook NT910S3T-K81S
Samsung Notebook NT200B5C
Macbook Pro A1706 (EMC 3163)
Galaxy A5 SM-A500x
Galaxy Note 8 SM-N950x
Galaxy S8 SM-G950
Galaxy S8 SM-G955N
Galaxy S9 SM-G960N
iPhone SE A1662
iPhone 5S A1519
iPhone 6S Plus A1524
LG V20 V20 F800

summarizes the performance of our GD-ResNet implemen-
tation: it achieved 0% and 23% EERs on our own dataset
and the ASVspoof 2017 dataset, respectively. As for space
complexity, we counted the number of features extracted from
a single voice sample. Compared to 97 features used by Void,
GD-ResNet uses 786,432 features. As for the average mem-
ory used for classifying a sample, Void uses about 1.99MB,
whereas GD-ResNet uses 1,194.68MB.

Table 18: GD-ResNet space complexity.

Measure Void GD-ResNet[17]
Extraction (sec.) 0.035 0.100
Training (sec.) 0.283 40,560.264
Testing (sec.) 0.035 0.120
#Features 97 786,432
Memory size (MB) 1.988 1,194.684
Performance (EER) 11.6% 23%

	Introduction
	Threat Model
	Voice replay attacks
	Adversarial attacks

	Requirements
	Latency and model size requirements
	Detection accuracy requirements

	Key classification features
	Decay patterns in spectral power
	Peak patterns in spectral power
	Linear prediction cepstrum coefficients (LPCC)

	System design
	Void overview
	Signal transformation
	Feature extraction
	Low frequencies power features
	Signal power linearity degree features
	High power frequency features
	LPCC features

	Attack detection

	Data Collection
	Demographics and human voice collection
	Replay attack dataset
	ASVspoof 2017 dataset

	Evaluation
	Experiment setup
	Optimal classification method for Void
	Attack detection accuracy
	Latency and model complexity results
	Using Void as an ensemble solution
	Effects of variances
	Attack source distances
	Gender
	Loudspeaker types
	Cross data training

	Replay attacks in unseen conditions

	Robustness against adversarial attacks
	Hidden voice command attacks
	Inaudible voice command attacks
	Voice synthesis attacks
	Audio EQ manipulation attacks
	Combining replay attacks with live-human voices

	Discussion
	Latency and accuracy requirements
	Low-incidence population
	Limitations

	Related work
	Conclusion
	Classifying live-human voices and voices replayed through in-built speakers with three signal power features
	Power patterns for different loudspeakers
	Summary of linearity degree features
	Summary of high power frequency features
	Finding the optimal feature set
	Feature and model parameters
	List of playback devices
	List of recording devices
	Implementation of GD-ResNet

