
 SAP Gateway to Heaven
OPCDE DXB 2019

$ whoarewe

Dmitry @_chipik Chastuhin
IT Security Researcher

Mathieu @gelim Geli

IT Security Research Engineer, 15 years in the field,
last 4 years focused on ERP, mixing blue and red.

now Sogeti consultant

https://twitter.com/_chipik
https://twitter.com/gelim

Agenda
Why

SAP Application Servers

SAP Gateway

SAP Message Server

New vectors on MS internal

Mitigations

Why this research?

- Raise awareness for SAP admins on configuration/architecture issues

- Have fun with pysap (Big up to @MartinGalloAr)

- Give back something to the community

- Adds more bullets for SAP pentests when other vulns won’t help

https://github.com/SecureAuthCorp/pysap
https://twitter.com/MartinGalloAr

Acronyms
SAP specific terms

● AS
● RFC
● SID
● ABAP
● CLIENT

SAP Applications Server

● SAP Netweaver (ABAP / Java)

Historical SAP AS since 2004

Mainly what you’ll find as on-premise
systems on big corp

● SAP S4/HANA

(basically an ABAP AS + HANA DB
used as a backend for the new shiny
Fiori frontends)

SAP Gateway

● On all SAP systems
● Communication between work processes and external program
● Communication between work processes from different instances

Ironically first FAQ entry on SAP’s wiki is “Disabling gateway security”.

https://wiki.scn.sap.com/wiki/display/SI/Disabling+gateway+security

SAP Gateway

SAP Gateway

● RFCEXEC: authentication + authorization enforced

● SAPXPG: anonymously when Gateway ACLs not secured

OS Remote Command Execution

SAP Gateway Exploit

SE37

SAP Gateway Exploit

SE37

SAP Gateway Exploit

sniff

SE37

SAP Gateway Exploit

SAP Gateway security history

Attacking the Giants: Exploiting SAP Internals by Mariano Nunez (Hola!) 2007

Rootkits and Trojans on your SAP Landscape by Ertunga Arsal (Merhaba!) 2010

Remote Function Call: Gateway Hacking and Defense by SAP (Guten Tag!) 2012

No PoC

Now you have 2
https://github.com/chipik/SAP_GW_RCE_exploit

https://www.blackhat.com/presentations/bh-europe-07/Nunez-Di-Croce/Presentation/bh-eu-07-nunez_di_croce-apr19.pdf
http://myweb.sabanciuniv.edu/ertunga/files/2011/01/27C3-Ertunga-Arsal-Rootkits-and-Trojans-on-your-SAP-Landscape-Slides.pdf
http://sapvod.edgesuite.net/TechEd/TechEd_Vegas2012/pdfs/SIS203.pdf
https://github.com/chipik/SAP_GW_RCE_exploit

SAP Gateway Exploit

● Pros
○ Easy to replay
○ Just 4 packets
○ Just 1 dynamic variable - CONVID (8 digits). It’s like a session number
○ No dependencies. Easy to code. Fast.

● Cons
○ We don’t know what is inside the protocol
○ Output limitation. If output is big Gateway encodes it
○ Maintenance painful

$ python SAPanonGWv1.py -t <ip> -p 3300 -c whoami
[*] sending cmd:whoami
n45adm

Replay based PoC

SAP Gateway. Reversed protocol
Packet 1

Packet 3

SAP Gateway. Reversed protocol

RFC CPIC TH XPGNITCP

SAP Gateway
Internet exposition

(example sample on tcp/3300, tcp/3301)

Tools of the trade
● scan+detection: zmap+zgrab with custom probes developed for SAP services
● storage+visualization: IVRE (https://ivre.rocks)

https://ivre.rocks/

SAP Gateway

gw/acl_mode = 1
gw/sec_info = /usr/SID/INSTANCE/data/secinfo

gw/reg_info = /usr/SID/INSTANCE/data/reginfo

Default secinfo file:

P USER=* USER-HOST=local HOST=local TP=*

P USER=* USER-HOST=local HOST=internal TP=*

P USER=* USER-HOST=internal HOST=local TP=*
 “any remote user from SID-member
AS can run any transaction program on

this AS”

SAP Note 1408081

Security state now

https://launchpad.support.sap.com/#/notes/821875

SAP Gateway bypasses
● Change profile parameters

○ gw/acl_mode = 0
■ we can change gw/acl_mode from 0

to 1, but can't from 1 to 0
○ gw/sim_mode = 1

● RFC functions that allow to change
profile parameters

○ TH_CHANGE_PARAMETER
○ SPFL_PARAMETER_CHANGE_VALUE
○ ANST_CHANGE_PARAMETER

● Become an “internal”

SAP Gateway

So you need to be connecting from one of the member AS to get GW RCE

● If you find a service that proxifies your connection to 127.0.0.1 or to one of the
AS you win

● ABAP custom code audit
● Java custom code audit

● What about SAP router?

Become internal

“Application level reverse-proxy, mainly used to connect SAP’s customers network to
SAP SE systems for support purpose”

● tcp/3299
● ACL file saproutertab may allow src ‘*’ to connect to port ‘33NN’
● In certain scenario, if the SAP Router system is part of the targeted AS, you will

be trusted and get RCE.

Example: admin spawned saprouter on one of the AS, and allow connection to 33NN
on itself or other member AS.

/H/saprouter1/S/3299/H/appserver/S/3300

$ router_portfw.py -d saprouterhost -p 3299 -t sapgwhost -r 3300 --talk-mode=ni

SAP Gateway via SAP Router

SAP Router
Internet exposition

Tools of the trade
● scan+detection: zmap+zgrab with custom probes developed for SAP services
● storage+visualization: IVRE (https://ivre.rocks)

https://ivre.rocks/

SAP Gateway

● Secure Gateway by default (pentests confirm it)
● Bouncing over SAP Router is not the default

There should be another way…

Bypass Next-Gen

SAP Message Server
Message Server is a central communication channel between all SAP instances
part of the SID.

Its main use is for:

● Distribution of user logons (disp+work on 32NN) and RFC (gateway on 33NN)
via logon groups

● Information point for the application servers (they continuously communicate
their state and properties to it)

SAP Message Server

SAP Message Server

Message Server now splitted

- tcp/36NN : public

- tcp/39NN : internal

Authorization via ms/acl_info

default ACL HOST=*

No authentication

SAP Message Server

nmap SAP service enhanced probes
https://github.com/gelim/nmap-erpscan

https://github.com/gelim/nmap-erpscan

SAP Message Server :: Exposition
So 39NN should not be available to clients.
What about 0.0.0.0/0?

Same situation for on-premise servers. 39NN is most of the time available to clients

SAP Message Server
pysap/SAPMS.py

SAP Message Server

Issue POC

Profile parameter read pysap/examples/ms_dump_params.py

Denial of Service (MS HTTP) pysap/examples/ms_dos_exploit.py

Profile parameter write pysap/examples/ms_change_param.py

Potential RCE + DOS POC for crash only

Past issues

Message Server internal

Validate this assumption: we can fool MS to have the gateway trust us (so that
we are seen as internal server).

Lab test: iptables trick between AS part of different SID

Scope: (PAS: Primary AS, AAS: Additional AS)
SID1 PAS1 AAS1

SID2 PAS2 AAS2

Replay based PoC

Message Server :: BeTrusted :: iptables PoC

1. Nominal situation (AAS2 trusted to do RCE
on PAS2)

2. Stop SAP on AAS2

SID1 SID2

Message Server :: BeTrusted :: iptables PoC

1. MS internal traffic redirection on AAS2

2. Starts SAP on AAS2

$ iptables -t nat -A OUTPUT \

 -p tcp -d PAS2 --dport 3901 \

 -j DNAT --to PAS1

SID1 SID2

Message Server :: BeTrusted :: iptables PoC

1. AAS2 connects to PAS1:3901 and
registers itself (check TCODE SMMS
on PAS1)

2. AAS2 is added to the trusted list on
the gateway of PAS1

3. AAS2 is now able to get RCE

SID1 SID2

Message Server :: BeTrusted

What we want

- no dependency on a full SAP server
- exploit

What we have

- own lab of SAP servers (for legal research)
- pysap library with existing dissectors SAPMS + examples PoCs

(ms_impersonator.py not enough)
- application server logs (dev_ms, dev_rd, dev_disp, dev_wN)

Exploit development

1. Record a packet trace on MS internal port between
AAS and PAS when AAS is starting up

2. Loop a “whoami” anon RCE GW

3. Locate the packets that triggers our IP to be added
in trusted list

4. Implement in /pysap the missing layers to fully
replay the packet sequence

Message Server :: exploit development
Roadmap

1. Record a packet trace on MS internal port between
AAS and PAS when AAS is starting up

2. Loop a “whoami” anon RCE GW from AAS to PAS

3. Locate the packets that triggers our IP to be added
in trusted list

4. Implement in /pysap the missing layers to fully
replay the packet sequence

Message Server :: exploit development
Roadmap

1. Record a packet trace on MS internal port between
AAS and PAS when AAS is starting up

2. Loop a “whoami” anon RCE GW from AAS to PAS

3. Locate the packets that triggers our IP to be added
in trusted list

4. Implement in /pysap the missing layers to fully
replay the packet sequence

Message Server :: exploit development
Roadmap

1. Record a packet trace on MS internal port between
AAS and PAS when AAS is starting up

2. Loop a “whoami” anon RCE GW from AAS to PAS

3. Locate the packets that triggers our IP to be added
in trusted list

4. Implement in /pysap the missing layers to fully
replay the packet sequence

Message Server :: exploit development
Roadmap

1. Record a packet trace on MS internal port between
AAS and PAS when AAS is starting up

2. Loop a “whoami” anon RCE GW from AAS to PAS

3. Locate the packets that triggers our IP to be added
in trusted list

4. Implement in /pysap the missing layers to fully
replay the packet sequence

Message Server :: exploit development
Roadmap

Message Server :: reverse protocol

Packet trace = ~100 MS packets

 NO RCE RCE

pysap dissector implementation

 Parsing ~OK Parsing NOK Trigger
 512-padding “garbage” packet

Message Server
ADM packets properly parsed

● Learn from supported packets

● marker ‘AD-EYECATCH’

● Key for “session” tracking

● ADM record opcode related to
MS internal storage (synced to
file storing load-balancing info)

SAPMS
 ADM

ADM
rec0

ADM
rec1

ADM
rec2NITCP

Message Server
pysap minor fixes

Message Server :: exploit development
Last packets

Message Server :: exploit development

512 bytes padding reverse process

● dev_ms : Message Server
● dev_disp: Dispatcher
● dev_wX: Worker processes
● dev_rd: Gateway

Iterative process:
● Overwrite moving window of ‘FF’s
● Errors in logs tell a lot (data role & packing)

Message Server :: exploit development

● 512 bytes padding host a new “layer”
● Dispatcher/disp+work level information

● MS ‘key’ is used to track requests at worker level (decoded as triplet T/U/M)
● Dispatcher on system1 requesting a Worker on system2

SAPMS + Dispatcher layer

From To

Name ms-from-name ms-to-name

Agent DISP WORKER

Worker type NOWP DIA

Worker num 0 2

Request id (T/U/M) -1/-1/-1 T/U/M (ms_key)

Message Server :: exploit development
WP ⇄ Dispatcher messages

Message Server :: exploit development
broken ADM packets fixed

Message Server :: exploit finalization

Now we can:

● Associate to MS internal
● Wait and answer to request

RGWMON_SEND_NILIST with our IP
● Profit like it’s 2007

Message Server :: exploit finalization

Now we can:

● Associate to MS internal
● Wait and answer to report

RGWMON_SEND_NILIST with our IP
● Profit like it’s 2007

$ python SAPanonGW.py -t <ip> -p 3300 -c whoami
[*] sending cmd:whoami
s4padm

Message Server :: exploit development

Testing on other servers / kernel version?

721, 722, 749, 753?

Message Server :: exploit development

Testing on other servers / kernel version?

721, 722, 749, 753?

IT BREAKS. DO IT AGAIN.

Message Server :: BeTrusted attack
Demo time (1’37)

https://docs.google.com/file/d/1uBYcD_pIwSi2ouT9GA4zf0ceBi14D_lx/preview

 Network

Remediation

Restrict authorized hosts via ACL file on MS internal
pointed by profile parameter ms/acl_info

Split MS internal/public: rdisp/msserv=0
 rdisp/msserv_internal=39NN

Never expose MS internal port (tcp/39NN) to clients

SAP Note 1421005

SAP Note 821875

In-depth security via complementary measures

https://launchpad.support.sap.com/#/notes/821875
https://launchpad.support.sap.com/#/notes/821875

Message Server :: Logon Group Hijacking

● ADM packets can modify the Logon Groups
● Overwrite chosen logon group to point to our IP
● Redirect client’s dispatcher traffic to legitimate AS
● Grab users’ login details on the fly
● Works if SNC disabled

● Better than L2 MITM, restricted by the IP connectivity with clients and AS
● Working scenarios over internet

Bonus attack

Message Server Internal

Update storage dynamically via
STRG_TYPE_WRITE_* ADM records

Logon Group Hijacking

Message Server Internal

$ watch --color sap_ms_monitor_storage.py --host IP --port 3901

[+] Connected to message server IP:3901

[+] Text Storage

SPACE : 172.16.30.90 3220 740

FAV_COMPUTE_SERVER : sapgrcprd_GRP_01 00:07:37

FAV_COMPUTE_TIME : FAV_COMPUTE_TIME 1457

Logon Group Hijacking

$ sudo sap_ms_dispatcher_mitm.py --host IP --port 3901

--

SAPGRCPRD_GRP_00 | sapgrcprd | 172.16.30.90 | 3200 | ICM+ATP+SPO+BTC+ENQ+DIA | ACTIVE

SAPPWN_GRP_00 | evilactor | 172.16.2.80 | 0 | ICM+ATP+SPO+BTC+ENQ+DIA | ACTIVE

--

Will run the following Linux commands to transparently redirect SAPGUI clients

to the real server

echo 1 > /proc/sys/net/ipv4/ip_forward

iptables -t nat -I PREROUTING -p tcp --dport 3200 -d 172.16.2.80 -m comment --comment "SPACE_172.16.30.90_3200" -j DNAT --to 172.16.30.90:3200

iptables -t nat -I OUTPUT -p tcp --dport 3200 -d 172.16.2.80 -m comment --comment "SPACE_172.16.30.90_3200" -j DNAT --to 172.16.30.90:3200

iptables -t nat -I POSTROUTING -o eth0 -m comment --comment "SPACE_172.16.30.90_3200" -j MASQUERADE

Press [Enter] when you are ready to MITM...

Read-only MS
storage monitoring

Message Server Internal: Logon Group hijacking
Demo time (1’27)

https://docs.google.com/file/d/1nw7HEAv8cldtL8tKvkGcu7rt8SCzuej9/preview

 Network

Remediation

Restrict authorized hosts via ACL file on MS internal
pointed by profile parameter ms/acl_info

Split MS internal/public: rdisp/msserv=0
 rdisp/msserv_internal=39NN

Never expose MS internal port (tcp/39NN) to clients

Enable SNC for clients

SAP Note 1421005

SAP Note 821875

In-depth security via complementary measures

 Transport

https://launchpad.support.sap.com/#/notes/821875
https://launchpad.support.sap.com/#/notes/821875

Detection

● ms/audit=1|2 + dev_ms file monitoring
● network flow monitoring on 32NN, 33NN, 39NN
● http(s)://<msg_serv_host>: <msg_serv_http_port>/msgserver/text/logon
● transaction SMMS

PoC||GTFO

● Pysap MS+RFC patch https://github.com/gelim/pysap

● Anon Gateway RCE https://github.com/chipik/SAP_GW_RCE_exploit

● MS “betrusted” & dispatcher MITM: https://github.com/gelim/sap_ms

WARNING: RUN ON PROD AT YOUR OWN RISK. SHENANIGANS EVERYWHERE.

https://github.com/gelim/pysap
https://github.com/chipik/SAP_GW_RCE_exploit
https://github.com/gelim/sap_ms

!Thank you شكرا

